理论教育 揭开量子生命奥秘-神秘的量子生命

揭开量子生命奥秘-神秘的量子生命

时间:2024-01-18 理论教育 版权反馈
【摘要】:形形色色的量子现象之前我们描述过量子隧穿和量子叠加态,它们都既存在于太阳的核心,也存在于电子设备中,比如电子显微镜和核磁共振成像扫描仪之中。这是整个物理学中最深奥的问题,与我们之前提到过的量子测量现象有关。因此,宣称鸟类磁性罗盘是量子纠缠的,与宣称量子纠缠在一个只涉及几个分子的特殊化学反应中起到了作用是两个完全不同级别的命题。但是,那种发现量子力学在日常生物现象中所起作

揭开量子生命奥秘-神秘的量子生命

形形色色的量子现象

之前我们描述过量子隧穿和量子叠加态,它们都既存在于太阳的核心,也存在于电子设备中,比如电子显微镜核磁共振成像扫描仪之中。那么,量子现象出现在生物学中又有什么值得我们大惊小怪的呢?

生物学,其实只是一种应用化学,而化学又是一种应用物理学。因此,当你非要刨根问底时,所有的事物,包括我们和其他生物,都是物理学而已!这正是许多科学家所支持的论点,他们认为量子力学必须深层次地参与到生物学中,但他们同时也认为量子力学在生物学中的角色是无足轻重的。这些科学家想表达的观点是:因为量子力学的规则描述了原子的行为,而生物学毫无疑问地包含了分子间的相互作用,那么量子力学的规则在生物学最微观的层面一定也适用——不过也仅仅在这些最微观的层面适用,而在对生命至关重要的一些宏观过程中,量子力学只有很少的作用或是根本就没有作用。

这些科学家的观点至少是部分正确的。诸如像DNA或是酶之类的生物分子是由像质子和电子这样的基本粒子组成的,而这些粒子的相互作用受限于量子力学。不过,话说回来,你正在读的这本书或是你正在坐的椅子其实也是一样的。你走路、说话、进食、睡觉,甚至思考的方式,无一不取决于量子世界中的力对电子、质子及其他粒子的控制,正如你的汽车和烤面包机的运转也极大地依赖于量子力学一样。

但是,总的来说,你并不需要知道这些。车辆机械工人并不要求在大学时修量子力学的学分,大多数生物学专业的课程也鲜有提及量子隧穿、量子纠缠或是量子叠加态。即使我们不知道这个世界的运转,除了基于我们熟悉的规则外,其实从根本上还依靠着一套我们完全不熟悉的法则,我们中的大多数人也照样活得好好的。发生在极微观层面的奇异量子现象,对大一点的东西来说,比如我们每天见到和使用的汽车或烤面包机,通常并不能产生什么影响。

为什么不能呢?足球不能穿墙而过,人与人之间并没有幽灵般的联结(除了伪称的心灵感应),你会沮丧地发现,自己不能同时既在办公室又在家里。但是,构成足球或是人体的基本粒子却能做到所有这些事情。为什么会有这样一条断层线?边界的一边是我们眼见为实的世界,而其表面之下,在边界的另一边,是物理学家们确认存在的另一个不同的世界。这是整个物理学中最深奥的问题,与我们之前提到过的量子测量现象有关。

当量系统与诸如阿兰·阿斯拜克特实验中的偏光镜等经典物理学的测量工具相互作用时,量子系统立刻失去了其量子特异性,表现得像经典物理学的物体一样。但是,我们周围的世界是我们看到的这个样子,并不能完全归咎于物理学家们采用的测量方法。那是什么力量在物理实验室之外使量子行为消失了呢?

答案与粒子的排列方式及其在大型(宏观)物体中的运动方式有关。原子与分子倾向于在非生命固体内随机地散布及无规则地振动;在液体与气体中,由于热的关系,它们也会持续地随机运动。这些随机的因素——散布、振动与运动——导致粒子波浪式的量子性质迅速消失。因此,其实是一个物体的所有量子成分的整体行为,共同完成了对所有成分的“量子测量”,也因此让我们周围的世界看起来变得正常。

为了观察到量子的特异性,你要么必须去一些不同寻常的地方(比如太阳的内层),要么凝视深层的微观世界(借助类似电子显微镜的工具),要么仔细地把量子粒子排成一行,以便它们能够步调一致地前进(正如当你躺在核磁共振成像扫描仪中时,你体内的氢原子核会按照相同的方式自旋——当关掉电磁铁后,原子核的自旋方向重新变得随机,量子一致性会再一次被抵消掉)。同理,分子随机化可以解释为什么大多数时候没有量子力学我们也可以照样过日子:我们周围所有能看见的非生命物体,其量子特异性由于构成它们的分子持续地向各个方向随机运动,而被抵消掉了。(www.daowen.com)

注意是“大多数时候”而不是“总是”。正如舒尔滕所发现的那样,只有用到纠缠态这一精妙的量子理论时,才能解释高速三重态反应的反应速度。但高速三重态反应不过只是“快”而已,而且仅仅涉及两三个分子。要想解释鸟类的导航能力,量子纠缠必须对整只知更鸟施加持续的影响。因此,宣称鸟类磁性罗盘是量子纠缠的,与宣称量子纠缠在一个只涉及几个分子的特殊化学反应中起到了作用是两个完全不同级别的命题。因此,这个主张受到了相当数量的怀疑也就不足为奇了。

通常认为,活细胞主要是由水和生物分子组成的,并处于一种恒定的分子搅动状态中,而这种分子搅动会立刻测量并分散奇特的量子效应。此处的“测量”并不是让水分子或生物分子真的去完成测量(就像我们测量物体的重量或是温度),然后把数值永久地记录在纸上、电脑的硬盘上,甚至仅仅是记在我们的大脑里。此处我们所讨论的“测量”是当一个水分子撞击在处于量子纠缠态中的一对粒子的其中之一上时所发生的事情:水分子随后的运动会受到该粒子先前状态的影响,因此,如果去研究水分子撞击后的运动,将能推理出与其相撞的粒子的一些性质。

从这个意义上来讲,水分子完成了一次“测量”,因为不管是否有人去检验,水分子的运动提供了一份关于被撞击的纠缠粒子对的记录。这种偶然的“测量”通常足以破坏纠缠态。因此,许多科学家认为,宣称精细的量子纠缠态能够在温热而复杂的活细胞内部保存下来,是一种不切实际的想法,近于疯癫。

但是,近几年来,我们关于这类事物的知识取得了巨大的进步——不仅仅是与鸟类相关。在许多生物现象中的确发现了诸如叠加态和隧穿之类的量子现象,从植物如何获得阳光到我们的细胞如何制造生物分子都涉及该内容。甚至连我们的嗅觉或是我们从父母那里继承来的基因可能都要依赖奇异的量子世界。研究量子生物学的论文现在经常出现在世界上最权威的科学期刊上。尽管现在只有一小部分科学家坚持认为量子力学在生命现象中扮演的角色不是无足轻重的,而是至关重要的,但这个数量正在增长。而生命,在一个特殊的位置——量子世界与经典世界的边缘上,维持着奇异的量子特性。

我们于2012年9月在英国萨里大学举办了量子生物学国际研讨会,该领域中的绝大多数科学家都出席了这次会议(见图0-2),而我们竟然成功地把大家全安排进了一个小型阶梯教室里,那时,我们清楚地发现,研究量子生物学的科学家在数量上真的很少。但是,那种发现量子力学在日常生物现象中所起作用的兴奋,正在驱动着这个领域快速发展。为什么温热、湿润、混乱的生命体内能有量子特异性存在?这个谜题的答案已逐渐浮出水面,而对这个问题的研究可能对新量子技术的发展产生巨大影响,量子生物学是目前最令人激动的研究领域。

不过,要想真正感受这些发现的重要性,我们必须先提一个貌似简单的问题——生命是什么。

自左至右为,吉姆·艾尔-哈利利(Jim Al-Khalili)、约翰乔·麦克法登(Johnjoe McFadden)、弗拉特科·韦德拉(Vlatko Vedral)、格雷格·恩格尔(Greg Engel)、奈杰尔·斯克鲁顿(Nigel Scrutton)、索斯藤·里茨(Thorsten Ritz)、保罗·戴维斯(Paul Davies)、珍妮弗·布鲁克斯(Jennifer Brookes)、格雷格·斯科尔斯(Greg Scholes)。

图0-2 2012年英国萨里大学量子生物学国际研讨会的出席者

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈