理论教育 探索数学奥秘:思辨数学真谛!

探索数学奥秘:思辨数学真谛!

时间:2023-12-02 理论教育 版权反馈
【摘要】:数论探秘|寻找数学中的皇冠|数论这门学科最初是从研究整数开始的,所以叫做整数论。所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。因此关于质数性质的有关问题,一直受到数学家的关注。解析数论是解决数论中艰深问题的强有力的工具。几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。

探索数学奥秘:思辨数学真谛!

数论探秘|寻找数学中的皇冠|

数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切地说,数论就是一门研究整数性质的学科。

数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

自古以来,数学家对于整数性质的研究一直十分重视,但是直到19世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。自我国古代,许多著名的数学著作中都有关于数论内容的论述,比如:求最大公因数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、合数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。到了18世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和研制的方法进行了分类,还引进了新的方法。提起数论就不得不提一个人,他就是英国著名数论学家哈代。他是数论领域里的精英。在牛顿之后,因为英国和欧洲一直在争执微积分的创始人到底是谁,所以英国的数学一直委靡不振。但到了哈代才有了很大的发展。

数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。比如中国古代有名的“中国剩余定理”,就是初等数论中很重要的内容。解析数论是使用数学分析作为工具来解决数论问题的分支。数学分析是以函数作为研究对象的、在极限概念的基础上建立起来的数学学科。用数学分析来解决数论问题是由欧拉奠基的,俄国数学家切比雪夫等也对它的发展做出过贡献。解析数论是解决数论中艰深问题的强有力的工具。比如,对于“质数有无限多个”这个命题,欧拉给出了解析方法的证明,其中利用了数学分析中有关无穷级数的若干知识。20世纪30年代,苏联数学家维诺格拉多夫创造性地提出了“三角和方法”,这个方法对于解决某些数论难题有着重要的作用。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。几何数论研究的基本对象是“空间格网”。什么是空间格网呢?在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。

华罗庚(www.daowen.com)

数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;有文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。下面简要列出几颗“明珠”:费马大定理、孪生素数问题、歌德巴赫猜想、圆内整点问题、完全数问题……

在我国近代,数论也是发展最早的数学分支之一。从20世纪30年代开始,在解析数论、丢翻图方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究得到了更大的发展。尤其是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是“筛法”的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。

数学链接 SHU XUE LIAN JIE

解析数论

解析数论,借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论借由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等都是属于这个范畴的重要议题。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈