理论教育 梅森素数之谜-思辨数学真谛

梅森素数之谜-思辨数学真谛

时间:2023-12-02 理论教育 版权反馈
【摘要】:梅森素数|千年不休的探寻之旅|素数也叫质数,是只能被1和自身整除的数,如2、3、5、7等等。2300多年来,人类仅发现46个梅森素数。电子计算机的出现,大大加快了探究梅森素数的步伐。由于史洛温斯基一共发现7个梅森素数,他被人们誉为“素数大王”。梅森网格这一崭新技术的出现使梅森素数的探寻如虎添翼。由于史密斯发现的梅森素数已超过1000万位,他将有资格获得EFF颁发的10万美元大奖。

梅森素数之谜-思辨数学真谛

梅森素数|千年不休的探寻之旅|

素数也叫质数,是只能被1和自身整除的数,如2、3、5、7等等。公元前300多年,古希腊数学欧几里得用反证法证明了素数有无穷多个,并提出了少量素数可写成2p-1(其中指数p为素数)的形式。此后许多数学家,包括数学大师费马、笛卡尔莱布尼茨、哥德巴赫、欧拉、高斯、哈代、图灵等都研究过这种特殊形式的素数,而17世纪的法国数学家梅森是其中成果最为卓著的一位。

由于梅森学识渊博,才华横溢,并是法兰西科学院的奠基人,为了纪念他,数学界就把2p-1型的数称为“梅森数”,并以Mp记之(其中M为梅森姓氏的首字母);如果Mp为素数,则称之为“梅森素数”。2300多年来,人类仅发现46个梅森素数。由于这种素数珍奇而迷人,因此被人们誉为“数学海洋中的璀璨明珠”。梅森素数一直是数论研究的一项重要内容,也是当今科学探索的热点和难点。

梅森素数

梅森素数貌似简单,但研究难度却很大。它不仅需要高深的理论和纯熟的技巧,而且还需要进行艰巨的计算。1772年,瑞士数学大师欧拉在双目失明的情况下,靠心算证明了M31(即231-1=2147483647)是一个素数。它具有10位数字,堪称当时世界上已知的最大素数。欧拉的毅力与技巧都令人赞叹不已,他因此获得了“数学英雄”的美誉。难怪法国大数学家拉普拉斯向他的学生们说:“读读欧拉,他是我们每一个人的老师。”在“手算笔录年代”,人们历尽艰辛,仅找到12个梅森素数。

电子计算机的出现,大大加快了探究梅森素数的步伐。1952年,美国数学家鲁滨逊等人将著名的卢卡斯-雷默方法编译成计算机程序,使用SWAC型计算机在短短几小时之内,就找到了5个梅森素数:M521、M607、M1279、M2203和M2281

1963年9月6日晚上8点,当第23个梅森素数M11213通过大型计算机被找到时,美国广播公司(ABC)中断了正常的节目播放,在第一时间发布了这一重要消息。发现这一素数的美国伊利诺伊大学数学系全体师生感到无比骄傲,为让全世界都分享这一成果,以至把所有从系里发出的信封都盖上了“211213-1是个素数”的邮戳。

随着素数p值的增大,每一个梅森素数Mp的产生都艰辛无比;而各国科学家及业余研究者们仍乐此不疲,激烈竞争。例如,在1979年2月23日,当美国克雷研究公司的计算机专家史洛温斯基和纳尔逊宣布他们找到第26个梅森数M23209时,有人告诉他们:在两星期前美国加州的高中生诺尔就已经给出了同样结果。为此他们又花了一个半月的时间,使用Cray—1型计算机找到了新的梅森素数M44497。这件事成了当时不少报纸的头版新闻。为与美国较量,英国原子能技术权威机构——哈威尔实验室专门成立了一个研究小组来寻找更大的梅森素数。他们用了两年时间,花了12万英镑的经费,于1992年3月25日找到了新的梅森素数M756839。不过,1994年1月14日,史洛温斯基等人为美国再次夺回发现“已知最大素数”的桂冠——这一素数是M859433。由于史洛温斯基一共发现7个梅森素数,他被人们誉为“素数大王”。

由于梅森素数在正整数中的分布是时疏时密极不规则的,因此研究梅森素数的重要性质——分布规律似乎比寻找新的梅森素数更为困难。数学家们在长期的摸索中,提出了一些猜想。英国数学家香克斯、法国数学家伯特兰和托洛塔、印度数学家拉曼纽杨、美国数学家吉里斯和德国数学家伯利哈特等都曾分别给出过关于梅森素数分布的猜测,但他们的猜测有一个共同点,就是都以近似表达式给出,而与实际情况的接近程度均难如人意。

中国数学家和语言学家周海中对梅森素数研究多年,他运用联系观察法和不完全归纳法,于1992年首先给出了梅森素数分布的精确表达式,从而揭示了梅森素数的重要规律,为人们探究这一素数提供了方便。后来这一科研成果被国际上称为“周氏猜测”。(www.daowen.com)

梅 森

网格这一崭新技术的出现使梅森素数的探寻如虎添翼。1996年初,美国数学家和程序设计师沃特曼编制了一个梅森素数计算程序,并把它放在网页上供数学家和数学爱好者免费使用,这就是著名的GIMPS项目。该项目采取网格计算方式,利用大量普通计算机的闲置时间来获得相当于超级计算机的运算能力。只要人们去GIMPS的主页下载那个免费程序,就可以立即参加GIMPS项目去搜寻梅森素数。人们通过GIMPS项目找到了12个梅森素数,其发现者来自美国、英国、法国、德国和加拿大。现在,世界上有160多个国家和地区近16万人参加了这一项目,并动用了30多万台计算机联网来进行网格计算。该项目的计算能力已超过当今世界上任何一台最先进的超级矢量计算机的计算能力,运算速度超过每秒350万亿次。为了激励人们寻找梅森素数,设在美国的电子新领域基金会(EFF)不久前向全世界宣布了为通过GIMPS项目来探寻梅森素数而设立的奖金。它规定向第一个找到超过1000万位数的个人或机构颁发10万美元。后面的奖金依次为:超过1亿位数,15万美元;超过10亿位数,25万美元。由于史密斯发现的梅森素数已超过1000万位,他将有资格获得EFF颁发的10万美元大奖。

梅森素数在当代具有十分丰富的理论意义和实用价值。它是发现已知最大素数的最有效途径;它的探究推动了数学皇后——数论的研究,促进了计算技术、程序设计技术、密码技术的发展以及快速傅立叶变换的应用。

探寻梅森素数最新的意义是:它促进了网格技术的发展。而网格技术将是一项应用非常广阔、前景十分诱人的技术。另外,探寻梅森素数的方法还可用来测试计算机硬件运算是否正确。

由于探寻梅森素数需要多种学科和技术的支持,所以许多科学家认为:梅森素数的研究成果,在一定程度上反映了一个国家的科技水平。英国顶尖科学家索托伊甚至认为它是标志科学发展的里程碑。可以相信,梅森素数这颗数学海洋中的璀璨明珠正以其独特魅力,吸引着更多的有志者去探寻和研究。

数学链接 SHU XUE LIAN JIE

网 格

网格(Grid)这个词来自于电力网格(PowerGrid)。“网格”与“电力网格”形神相似。一方面,计算机网纵横交错,很像电力网;另一方面,电力网格用高压线路把分散在各地的发电站连接在一起,向用户提供源源不断的电力。用户只需插上插头、打开开关就能用电,一点都不需要关心电能是从哪个电站送来的,也不需要知道是水力电、火力电还是核能电。建设网格的目的也是一样,其最终目的是希望它能够把分布在因特网上数以亿计的计算机、存储器、贵重设备、数据库等结合起来,形成一个虚拟的、空前强大的超级计算机,满足不断增长的计算、存储需求,并使信息世界成为一个有机的整体。

网格利用互联网把地理上广泛分布的各种资源(包括计算资源、存储资源、带宽资源、软件资源、数据资源、信息资源、知识资源等)连成一个逻辑整体,就像一台超级计算机一样,为用户提供一体化信息和应用服务(计算、存储、访问等),虚拟组织最终实现在这个虚拟环境下进行资源共享和协同工作的目的,彻底消除资源“孤岛”,最充分地实现信息共享。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈