理论教育 奇怪的麦比乌斯圈:思辨数学的魔力

奇怪的麦比乌斯圈:思辨数学的魔力

时间:2023-12-02 理论教育 版权反馈
【摘要】:奇怪的麦比乌斯圈|魔术般的数学魅力|麦比乌斯圈,也译作莫比乌斯带,是一种单侧、不可定向的曲面。麦比乌斯圈就这样被发现了。麦比乌斯圈本身具有很多奇妙的性质。这种怪瓶实际上可以看作是由一对麦比乌斯圈,沿边界粘合而成。麦比乌斯圈的概念被广泛地应用到了建筑、艺术、工业生产中。运用麦比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。

奇怪的麦比乌斯圈:思辨数学的魔力

奇怪的麦比乌斯圈|魔术般的数学魅力|

麦比乌斯圈,也译作莫比乌斯带,是一种单侧、不可定向的曲面。因A.F.比乌斯发现而得名。将一个长方形纸条ABCD的一端AB固定,另一端DC扭转半周后,把AB和CD粘合在一起,得到的曲面就是麦比乌斯圈。

数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢?

麦比乌斯圈

对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国数学家麦比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。

有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。

一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯取着耷拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈。麦比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将两端粘在一起,这样就做成了只有一个面的纸圈儿。圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。”麦比乌斯圈就这样被发现了。

关于麦比乌斯圈的单侧性,可如下直观地了解,如果给麦比乌斯圈着色,色笔始终沿曲面移动,且不越过它的边界,最后可把麦比乌斯圈两面均涂上颜色,区分不出何是正面,何是反面。对圆柱面则不同,在一侧着色不通过边界不可能对另一侧也着色。单侧性又称不可定向性。以曲面上除边缘外的每一点为圆心各画一个小圆,对每个小圆周指定一个方向,称为相伴麦比乌斯圈单侧曲面圆心点的指向,若能使相邻两点相伴的指向相同,则称曲面可定向,否则称为不可定向。麦比乌斯圈是不可定向的。

麦比乌斯圈本身具有很多奇妙的性质。如果你从中间剪开一个麦比乌斯圈,不会得到两个窄的带子,而是会形成一个把纸带的端头扭转了两次再结合的环(并不是麦比乌斯圈),再把刚刚做出那个把纸带的端头扭转了两次再结合的环从中间剪开,则变成两个环。如果你把带子的宽度分为三分,并沿着分割线剪开的话,会得到两个环,一个是窄一些的麦比乌斯圈,另一个则是一个旋转了两次再结合的环。另外一个有趣的特性是将纸带旋转多次再粘贴末端而产生的。比如旋转三个半圈的带子再剪开后会形成一个三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个。麦比乌斯圈常被认为是无穷大符号“∞”的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为∞”的发明比麦比乌斯圈还要早。(www.daowen.com)

麦比乌斯环

麦比乌斯圈还有着更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在麦比乌斯圈上获得了解决。比如在普通空间无法实现的“手套易位问题”:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套。不过,倘若你把它搬到麦比乌斯圈上来,那么解决起来就易如反掌了。“手套易位问题”告诉我们:堵塞在一个扭曲了的面上,左、右手系的物体是可以通过扭曲时实现转换的。但是,麦比乌斯圈具有一条非常明显的边界,这似乎是一种美中不足。公元1882年,另一位德国数学家费力克斯·克莱茵,终于找到了一种自我封闭而没有明显边界的模型,后来以他的名字命名为“克莱因瓶”。这种怪瓶实际上可以看作是由一对麦比乌斯圈,沿边界粘合而成。通常的一张纸条两端对接得到的纸环是有两个面的。你拿一张纸条,一端扭转180°,对接起来。这样你用一支铅笔在纸带中央点一个点,然后以这个点为起点沿着纸带画线,画一圈,两个点重合了,但是不在同个面上。要想回到原处,必须再走一圈。麦比乌斯圈其实是一怪圈。如果走不出麦比乌斯圈,第四维的存在就不具备意义。然而麦比乌斯圈永远不会从二维中走出,那么时间与过程,便不具备任何存在意义。企图从一个虚数轴里探寻所有谜底,仿佛更是一个没有谜底的谜。一群三维生物将生存的莫名性寄托在无法跨入的四维空间,又仿佛很有出路的样子。

着色的麦比乌斯圈

数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,“麦比乌斯圈”变成了拓扑学中最有趣的单侧面问题之一。麦比乌斯圈的概念被广泛地应用到了建筑、艺术、工业生产中。运用麦比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。

数学链接 SHU XUE LIAN JIE

麦比乌斯环拧劲

“麦比乌斯环拧劲”就是让人百思不得其解、知道它存在,但却未能明确找到的和明确表达出来的“上帝之手”。现代物理科学对此也有了最近、最新的发现,将之称之为“暗物质”或“暗能量”,实质上是找到宇宙生成时的“麦比乌斯环拧劲”,而在宇宙时空下“暗物质”是“暗能量”生成物质时的中间态,会以“暗能量”生成一对正反对立的两倍“能量”的形式存在并且会无处不在。更明确、确切地说,应该是以与“空间”的生成而同时生成的新的一对“正反能量体”的这一载体与这一载体所运行的空间和这一载体与统一整体的宇宙时空及宇宙时空中的万物不可分割的联系的形式表现出来、并以生成这一载体和这一载体所携带的“正反能量体”为结果的形式在宇宙时空下存在,也正因此,宏观宇宙的空间和物质就会在宏观的宇宙中呈现出空间与物质的不断生成和时间的延续,也正因这“麦比乌斯拧劲”或“暗能量”才有了推动宇宙万物的“时间之箭”,同时也正因为“暗能量”的存在导致在宏观宇宙时空下与宇宙时空中的任何一点,在“第一裂变”的过程中能量不守恒定律的必然存在,能量不守恒也只有在这一最初的“第一裂变”的过程中存在和适用。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈