理论教育 指派问题的线性规划模型及特点

指派问题的线性规划模型及特点

时间:2023-11-26 理论教育 版权反馈
【摘要】:一般地,指派问题的目标函数是min型,工作人员数和任务数是相等的,把符合这类特点的指派问题称为标准指派问题,否则称为非标准指派问题。

指派问题的线性规划模型及特点

1.指派问题的线性规划模型描述

为了更好地了解指派问题及其模型结构,先给出以下的引例。

例6.1 有装载货物的4辆待卸车,需要分派给4个装卸班组,每个班组只能卸1辆待卸车,同时每个待卸车只能由1个班组卸。由于技术专长不同,各个班组卸不同车辆所需要的时间如表6.1所示。那么应该如何分配卸车任务,才使卸车所花费的总时间最小?

表6.1 卸车时间表(小时)

解 设决策变量xij表示第i班组卸第j辆车,当xij=1时,表示第i个班组卸第j辆车;当xij=0时,表示第i个班组不卸第j辆车。由卸车所需要的时间列出目标函数,再根据4个装卸班组和4辆待卸车分别列出相对应的约束条件方程,那么卸车所花费总时间最小的线性规划模型为

基于上例可以建立此类问题的通用描述:

有n项任务需要分派给n个工作人员去完成,每个工作人员只能完成1项任务,同时每项任务只能由1个工作人员完成。每个工作人员完成不同任务所需要的时间如表6.2所示,应该如何分配才使完成任务所花费的总时间最小?

表6.2 时间表

解 设决策变量xij表示第i个工作人员完成第j个任务,则xij的取值为

基于问题可知:花费的总时间等于每个工作人员完成每项任务的时间之和,即有

每个工作人员只能完成1项任务,即有;(www.daowen.com)

每项任务由1个工作人员完成,即有

这样就可以把上面问题的线性规划模型归纳如下:

式(6.2)就是指派问题线性规划模型的通用形式。除了经常遇到n个人完成n个任务之外,在其他的活动中也会遇到诸如此类的问题。把具有模型(6.2)的形式和特点的线性规划问题称为指派问题。

一般地,指派问题的目标函数是min型,工作人员数和任务数是相等的,把符合这类特点的指派问题称为标准指派问题,否则称为非标准指派问题。至于出现目标函数是max型或工作人员数和任务数不相等的非标准指派问题将在第6.3节中讲到。

2.指派问题线性规划模型的特点

通过观察指派问题的线性规划模型,发现其具有如下特点:

(1)所有的约束条件方程(不包括决策变量的取值约束)都是等于1的等式。

(2)决策变量的取值只能是0或1。

(3)它包含n2个决策变量。

(4)模型有2n个约束条件方程。

(5)前n个方程说明i个人完成j个任务。

(6)后n个方程说明j个任务由i个人完成。

(7)从模型的结构来看,指派问题是运输问题的特例;从决策变量的取值来看,它是线性规划中的0-1规划问题。

指派问题既然是运输问题的特殊形式,那么就可以用运输问题的表上作业法求解,但是用此方法会产生严重的退化问题。指派问题也是线性规划中的0-1规划问题,可以用第7章讲到的整数规划或0-1规划的解法求解,但这样求解如同用单纯形法求解运输问题一样。因此,基于指派问题的特点,下面介绍另外一种可行、简便的方法,即下一节将要介绍的指派问题的求解方法——匈牙利法。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈