目前,物理学上解释万有引力的公认理论只有两个:牛顿的万有引力理论和爱因斯坦的广义相对论。牛顿的理论非常简单,只有一条公式。而且,这条公式的建立是经过大量的天文观察,并经过很多学者(包括开普勒、伽利略和牛顿等)的研究归纳而成。与此不同的是,广义相对论的公式非常复杂。而且,这套公式的建立主要是靠爱因斯坦一个人的推论。[注:也有人认为该公式的数学部分是由希尔伯特(David Hilbert)完成的。]在天文学的领域里面,牛顿的理论已经得到非常普遍的应用。理论的预测与观察的结果也非常吻合。可是在今天的宇宙学研究方面,许多理论模型依靠的却主要是广义相对论。目前,这些理论模型的预测还比较缺乏直接的观察数据来验证。
关于爱因斯坦建立广义相对论的历史,我们在附录9.1有一个简单的回顾。读者可以从其中了解这项工作的一些有趣的历史过程。广义相对论的方程非常复杂,不过由于它做出了一些大胆的假设,吸引了很多人的注意。如今,广义相对论已经被传媒杂志报道了无数次,即便是一个小学生也耳熟能详。所以有很多人以为这个理论已经是不争的事实,而不仅仅是一个“理论”了。
附录:关于爱因斯坦方程的一些曲折历史
关于爱因斯坦的生平,有很多的著作。其中一本比较权威的传记是W.Isaacson著的 《爱因斯坦:他的生平与宇宙》(Einstein: His Life and Uniνerse)。该书对于爱因斯坦发展广义相对论的过程有着详细生动的描述。以下是根据该书和其他一些参考文献总结而成的摘要。
爱因斯坦在完成了狭义相对论以后,开始思考万有引力的问题。由于狭义相对论只比较了两个匀速运动的惯性系统之间的时空关系,这个理论无法适用于万有引力定律。在宇宙之中,大部分的物体都会感受到引力的作用,这个问题是必须面对的。我们从牛顿力学知道,引力是与加速度有关的。如果要解决引力对于物体运动的作用,就必须把相对论应用到一个有加速度的惯性系统里面。从1907年年底开始,爱因斯坦就一直在思考这个问题。
但要实现这个目标并不容易。根据爱因斯坦自传里的描述,他有次正坐在伯尔尼专利局的椅子上的时候,突然产生一个想法:“如果一个人自由落下,他当然感受不到自己的重量”;“当一个人下落时,他在加速。他观察到的,无非就是在一个加速体系中观察到的东西。”由此,他决定将相对论从匀速运动体系推广到加速度体系中,并期待这一推广能让他解决引力问题。
这种想法促使爱因斯坦提出“等效原理”(Principle of Equivalence)。他认为:我们可以假设一个引力场和一个参考系统的相应加速度有完全的物理等效性。
爱因斯坦方程发展的过程
这个灵感使得爱因斯坦大受鼓舞。不过,虽然有了一个有趣的物理概念,但要把这个物理概念变成一套物理理论仍然有很大困难。尤其是要使得一个四维空间在加速情况的改变下符合洛伦兹变换,需要非常复杂的数学工具。爱因斯坦虽然有很好的物理直觉,但是他的数学功底并不好。他的数学老师闵可夫斯基就曾经数落爱因斯坦是“懒狗”。为了要把引力场的理论导入相对论里面,爱因斯坦在1912年请他的同学格罗斯曼(M.Grossmann)来帮忙。格罗斯曼推荐给爱因斯坦张量分析(tensor analysis)和其他一些数学工具,爱因斯坦开始在格罗斯曼的帮助下寻找能够共变(covariance),也就是可以描述各种旋转和有加速度的时候的方程式(也就是广义相对论的方程式)。到了1913年,他们还是没有办法找出能够完全满足条件的方程式。
作为一个阶段性的小结,爱因斯坦发表了一篇文章—《广义相对论及引力理论摘要》。这篇文章被称为“Entwurf”也就是“摘要”的意思。
1915年,爱因斯坦来到了柏林,成为普鲁士科学院的一员。他认为“摘要”一文中得到的方程已经是能最大限度的共变了。他也认为这些方程已经可以解释某些旋转的情况。因此,在1915年夏天哥廷根大学的讲座上,他很详细地展示了他的这个理论。当时的哥廷根大学在理论物理学研究的数学方面有最重要的中心地位。其中最牛的就是希尔伯特。希尔伯特也是位和平主义者。他对爱因斯坦的这个理论很感兴趣。很自然地,两人在见面后互相非常有好感。而希尔伯特也开始研究最后的正确方程应该是什么样的。
1915年10月,爱因斯坦发现了他的“摘要”一文中得到的方程有重要的问题。它们在旋转的变换下不是共变的。爱因斯坦觉得情况危急了,一定要在希尔伯特之前找出方程来才行。于是,他改变策略,重新重用1912年时格罗斯曼给他介绍的黎曼张量(Riemann tensor)和里奇张量(Ricci tensor)。
普鲁士科学院每周会举办一次周会,让其会员聚在一起听取其中某人的工作。爱因斯坦有一个系列持续4周的讲演。第一个讲演在1915年11月4日。那时爱因斯坦还没有能让他的方程全面共变。他工作得昏天黑地,经常连午饭也忘记了吃。他知道他在和希尔伯特赛跑,看谁先得出正确答案。他知道希尔伯特已经看出他“摘要”一文中得到的方程的问题,为了避免被抢先,他写了一封信给希尔伯特,告诉他自己四个星期以前就已经知道那篇文章中的错误,并随信寄上了他11月4日的文章,让他知道自己已经有所进展。
11月11日,爱因斯坦给了第二个讲演,他使用了里奇张量并给出了对坐标系的新的要求,但其中仍然有些错误。爱因斯坦把这篇论文寄给希尔伯特求教。希尔伯特立刻回信,表示他知道如何纠正论文中的错误,并表示他于11月16日在哥廷根大学有一场演讲,到时他会把他的理论详细地报告。他邀请爱因斯坦来哥廷根听他的讲演。在信的最后,希尔伯特还加了一句话:“就我所见,你的答案和我的答案完全不同。”
11月15日,爱因斯坦写信给希尔伯特,以胃痛的理由拒绝了他的邀请。并希望希尔伯特能寄给他一份希尔伯特给出的答案的文章的副本。第二天,希尔伯特就把文章寄给了爱因斯坦,据说里面包括了最终完整的引力场方程。
11月18日早上,爱因斯坦收到了希尔伯特寄来的文章,爱因斯坦回信给希尔伯特告诉他自己在3年前就已经考虑到了文中提到的内容;并提到自己当天会在普鲁士科学院给出解释水星轨道偏离的讲演。
11月20日,希尔伯特把他的文章拿到一家哥廷根的科学杂志去发表。
11月25日,爱因斯坦在普鲁士科学院给了他这个系列的最后一个讲演“引力的场方程”。这时他给出的方程终于是共变的,也就是今天人们所知道的“爱因斯坦方程”(Einstein’s equations)。这篇文章发表在次年三月的《物理年鉴》(Annalen der Physik)上面。(www.daowen.com)
其中:“Rμν是里奇张量,gμν是度量张量(space-time metric tensor),R是标量曲率(scalar curvature),Tμν是应力—能量张量(stress-energy tensor),G是牛顿万有引力常数,c是光速。μ和ν是代表时间和空间的参数,可等于0、1、2、3 。
爱因斯坦的这个方程日后取得了巨大的成功。但是他也对朋友表达过担心希尔伯特会分走一些功劳。到底是爱因斯坦还是希尔伯特先得出这个最后的方程呢?这在科学界有过激烈的争论。在最近一本介绍广义相对论的书里,有以下报道:“希尔伯特在11 月20 日发表的论文《物理学基础》,比爱氏早了5天,应已含有完整的场方程。不幸的是,在这篇原稿中完整场方程可能出现的部分,竟然在1994—1998 年被以刮胡刀切除。根据目前有的间接证据,甚至可推论出希尔伯特在11月16 日即以明信片寄给了爱氏他已导引出的完整场方程,而爱氏在11 月25 日才第一次在普鲁士科学院披露后来以‘爱氏场方程’命名的方程式”。所以对于这个广义相对论的方程,究竟应该称为“爱因斯坦方程”还是“希尔伯特方程”,今天成了悬案[1]。
宇宙常数
在爱因斯坦发表了他的广义相对论以后,他发现了一个问题,就是他给出的方程可能会导致宇宙的体积改变。但当时大多数科学家认为宇宙应该是恒定的。爱因斯坦为了使得他的方程符合当时人们的期望,他在1917年发表的《广义相对论的宇宙考虑》论文中,给他的方程式加了一条“宇宙常数”的尾巴。这个常数原来是用小写的λ表示,后来被改成大写的Λ。于是原来的广义相对论方程就变成:
添加这个宇宙常数纯粹是爱因斯坦个人的猜测,他的目的就是使得宇宙形成一种静态的表象。若不加上此项,则广义相对论所得原版本的爱因斯坦方程就得不到一个静态宇宙的解。
不过,在10多年以后,哈勃通过对多个星系的红移的观测,在1929年发现宇宙正在膨胀中。从此人们认识到,原来以为宇宙是静态的是一种错误的猜想。爱因斯坦曾去参观了哈勃的望远镜。他后来就忍不住说:添加宇宙常数是他一生“最大的失误”(biggest blunder)。他从此就把他的方程里的宇宙常数删掉了。
可是到了1998年,一些宇宙学研究发现了宇宙加速膨胀。这项研究又让“宇宙常数”死而复生。这时候人们认为这些加速膨胀是由于宇宙中存在“暗能量”的缘故。尝试解释暗能量的理论很多,其中最主流的想法认为暗能量和爱因斯坦方程中的“宇宙常数”相关。所以在21世纪,这个“宇宙常数”又堂而皇之地回到1917 年爱因斯坦给出的广义相对论方程里了。
至此,读者大概可以看出广义相对论不像牛顿万有引力理论,它的建立并非依赖对自然的大量观察,而是依靠某个人的猜测。真正了解广义相对论的科学家其实很少。这个理论受到重视,最初是因为在1919年英国天文学家爱丁顿(Arthur Eddington)进行了一次著名的验证,声称其观测结果支持了爱因斯坦的广义相对论。根据广义相对论,万有引力会扭曲时空,因此爱丁顿就利用了1919年的一次日食来观测远方星体的光线会不会被太阳的引力弯曲。他宣称他观测到的结果符合广义相对论的预测。
不过,后来有很多学者小心查阅了爱丁顿的实验记录,发现他当时的实验误差其实相当大,不足以给出支持或者否定广义相对论的结论。爱丁顿显然对数据做了一些主观的选择。不过由于他这个结论声称颠覆了牛顿的引力理论,在当时造成了极大的轰动。
当然,在几十年以后,有人用射电望远镜重新观察光子是否会被太阳的引力弯曲,得到了更加确定的结果。这在后来的文献被认为是对广义相对论最有力的支持。
除此以外,后来还有很多人做了许多关于验证广义相对论中的“等效原理”的实验。这些实验主要是验证电磁波在引力场中会不会发生一种红移现象,该现象被称为“引力红移”(gravitational redshift)。这些实验全部都证实了引力红移现象。因此,在今天,许多科学家都认为广义相对论已经被证实了。
不过,上述这些结果是否就表示广义相对论已经超越了理论的范畴,已经成为客观世界的事实呢?
本章作者对这个问题有很浓的兴趣。曾发表过一篇论文讨论这个问题[2]。以下是该文的一些要点:
第一,上面介绍的一些实验和观测,其结果可以有多种解释。广义相对论不是唯一能够解释这些结果的理论。就拿光被太阳弯曲的观察为例。许多人以为光的静止质量为零,所以不会受到引力的吸引。但这种理解是错的。我们在本书第五章已经指出,从光子的量子性质里,我们可以推导出它有一个等效质量(effective mass),它的值并非是零。这个等效质量,就是光子的惯性质量。我们知道,一个物体的引力质量其实是这个物体的惯性质量,而非静止质量。因此,即使根据牛顿的引力公式,光子也是可以受到引力作用的。所以不论是爱丁顿的日食观察,还是后来的射电望远镜实验,都可以用光子与太阳的引力互动作用来解释,而不一定要用广义相对论的时空扭曲理论来解释。
第二,那些利用“引力红移”现象来验证等效原理的实验,其实也可以用光子的等效质量不等于零的道理来解释。事实上,从光子的量子特性以及光子在引力场里的能量守恒,我们可以很容易导出光子受引力红移的方程。这个方程和广义相对论得出的结果是完全一样的。
第三,这个光子具备等效质量的理论也可以解释人们观察到星系的透镜效应(lensing effect)和黑洞(black hole)的产生。
因此,过去许多被认为是广义相对论的铁证,其实仍然是可争议的。在未来,科学家还需要做很多新的实验来检验广义相对论。而且,与以前的实验不同,这些新的实验设计必须满足“唯一性”(uniqueness)的要求。也就是说,这些实验的结果只能验证广义相对论的预测,而不能被其他的理论解释。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。