理论教育 ABAQUS有限元分析结果

ABAQUS有限元分析结果

时间:2023-10-10 理论教育 版权反馈
【摘要】:从图9.68可以看出:ABAQUS有限元模拟得到的滞回曲线更为饱满,有限元模型的抗侧刚度明显高于试验实测值。从图9.70中可以看出:有限元模型的应力分布情况与试验结果基本一致。

ABAQUS有限元分析结果

9.4.2.1 试验验证分析

由ABAQUS有限元软件计算所得的滞回曲线与试验实测曲线的对比见图9.68。从图9.68可以看出:ABAQUS有限元模拟得到的滞回曲线更为饱满,有限元模型的抗侧刚度明显高于试验实测值。原因有2点:首先,有限元建模过程中,忽略了波形钢板与混凝土之间的黏结滑移作用;其次,本章建模分析是对更换强制构件后的试件进行验证分析,未考虑初次加载对试件的刚度削弱。因此,有限元模拟得到的滞回曲线较试验实测更为饱满,捏缩现象不明显。

图9.68 滞回曲线对比

由上述滞回曲线得到各有限元模型的骨架曲线,将其与试验实测骨架曲线进行对比,如图9.69所示。从图9.69中可以看出:有限元模拟得到的骨架曲线与试验实测骨架曲线发展趋势一致,各阶段特征荷载基本与试验实测相当,各阶段特征位移较试验值有所减小,符合第4章所做的有关试件变形能力的分析:更换墙趾构件后,试件刚度退化,各阶段特征位移滞后。

图9.69 骨架曲线对比

根据有限元软件计算得到模型的应力云图,如图9.70所示。从图9.70中可以看出:有限元模型的应力分布情况与试验结果基本一致。模型RSPCSW-H9-F的混凝土应力集中部位主要集中在墙趾可更换区域附近,内嵌水平波形钢板的应力自上而下分布比较均匀,墙趾可更换高度范围内的应力较大。可更换墙趾消能器的应力发展情况与试验测得的应力情况相似。模型RSPCSW-V9-F的混凝土应力分布形式与试验中裂缝的走向基本吻合,内嵌竖向波形钢板的应力沿拉压效应方向发展,与钢板变形方向一致,并形成受剪方向的应力带,其可更换墙趾消能器破坏形态基本与试验一致。总体来讲,有限元模型可以较好地模拟试验。

图9.70 Von Mises应力云图

现将试验、有限元模拟和由公式(9-31)计算得到的峰值荷载列于表9.12。由表9.12可以看出,通过有限元模拟得到的峰值荷载与试验实测值相差不大,误差在10%以内。由本章9.2节所提出的抗剪承载力建议计算公式得到的承载力结果与试验结果,误差在10%以内。可以看到,模拟结果略大于试验结果,其原因是可更换墙趾消能器与母墙之间的连接板在试验过程中出现变形,使得水平荷载未能充分传递。若能解决底部支座上表面与混凝土墙体之间的连接问题,则带有可更换墙趾消能器的剪力墙抗剪承载力实测值还能提高。

表9.12 有限元分析结果和试验结果对比

注:Fm,f为模拟值,Fm,c为计算值,Fm为试验值。

9.4.2.2 变参数分析

鉴于本次试验试件有限,仅考虑了内置波形钢板不同放置形式对剪力墙试件的抗震性能影响。为进一步明确在不同参数下,带有可更换墙趾消能器的波形钢板-混凝土组合剪力墙的抗侧能力,利用ABAQUS有限元软件分析BCR值和剪力墙高宽比λ对剪力墙试件抗侧能力的影响。采用本章所述建模方法,共建立6个变参数有限元模型,各模型的参数见表9.13

表9.13 模型参数(www.daowen.com)

对于不同的可更换墙趾消能器波形钢腹板厚度和高宽比,各剪力墙模型的骨架曲线如图9.71所示。由图9.71可以看出:随着BCR的增加,剪力墙的抗侧刚度和抗侧承载力也会随之提高,而剪力墙的变形能力则有所下降。随着剪力墙试件高宽比的提升,剪力墙的抗侧刚度和抗侧承载力随之降低,而剪力墙的变形能力则有所提高。对比图9.71(a)和图9.71(b)可以发现,内置波形钢板竖向放置与水平放置相比,剪力墙的抗侧刚度和承载力更高,而变形能力也较优。结合试验结果分析,BCR值越大,剪力墙非更换部位的损伤越为严重,因此本书建议BCR取值为0.7~0.8之间。

图9.71 不同参数剪力墙模型骨架曲线

将各剪力墙模型骨架曲线的特征点汇总于表9.14,同时给出了不同参数下,各剪力墙模型抗侧承载力计算值,并给出了模拟值和计算值的相对误差。由表9.14可知,同等设计条件下,内置波形钢板竖向放置与水平放置相比,剪力墙的抗侧刚度和承载力更高,变形能力更好;各剪力墙模型的抗侧力计算值和模拟值误差基本在10%以内,说明本书所给出的抗剪承载力建议计算公式有一定的参考价值。

表9.14 不同腹板厚度模型的骨架曲线特征点

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈