【摘要】:在简单随机抽样中,样本均值是总体均值的无偏估计。(二)总体总值Y的估计量由总体均值的估计量,可推出总体总值的估计量(三)总体比例P的估计量若令则按照总体均值估计量的公式,可推出总体比例(成数)P的估计量为可以证明,在分层随机抽样中,是的无偏估计量,是Y的无偏估计量,是P的无偏估计量。
在简单随机抽样中,样本均值是总体均值的无偏估计。在分层抽样中,若仍用样本均值来估计总体均值,在一般情况下是否合理?先看下面的引例。
引例 总体由1000人组成,按以往收入情况分成两层,第一层(收入较高层)20人;第二层(收入较低层)980人。从第一层随机抽2人,调查上月收入得12000和16000元;从第二层抽8人,上月收入分别为2200、2300、1800、3200、4000、3400、2800及3600元。估计这1000人的月收入。
如果用样本均值
估计总体平均值,显然偏高。
若先分别算出这两层的样本均值=14000元,=2912.5元,则用
估计就合理多了。由此,分层抽样的估计量可按如下方式来构造。
(一)总体均值的简单估计量
在分层抽样中,总体均值的估计量一般用样本均值表示,它是各层总体均值的估计量按层权Wh的加权平均,即
一般情况下
在分层随机抽样中,是的无偏估计量,即E =,因此,(www.daowen.com)
且是的无偏估计量。
(二)总体总值Y的估计量
由总体均值的估计量,可推出总体总值的估计量
(三)总体比例P的估计量
若令
则
按照总体均值估计量的公式,可推出总体比例(成数)P的估计量为
可以证明,在分层随机抽样中,是的无偏估计量,是Y的无偏估计量,是P的无偏估计量。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。
有关抽样调查(修订版)的文章