做一个实验:把你的两只手正放在桌面上。想像一条垂直平分两大拇指之间连线的直线,它就是对称轴。如果把一面镜子放在这条直线上并倾向左手一点,那么它将在与你右手相应的位置形成一个映像。这就是轴对称。
不论是天然的事物还是人工的产品,一个最突出、最直观的几何性质就是对称性。在现实世界中,最明显的是人体的左右对称性。对称的概念出现在自然、艺术、科学、建筑乃至诗歌中。事实上,它能够在我们生活的几乎所有方面找到。有一些东西中它似乎是固有的,以至于我们常常视其为自然。正如大数学家外尔所说“对称性和美紧密相连”。对称性在数学给出严密的定义之前,多少还是模糊的,由于对称性与美联系在一起,往往与匀称也就是比例均匀、一个整体各部分配置平衡以及和谐、优美、适中及不走极端有些相似。但是物体的匀称与空间的几何图形的对称性有一定距离。
一只蝴蝶的体态、一片叶子的形状、人类的身体、一个完整的圆以及蜂窝结构等等,一看之下给人的感觉是完全均衡的,这多半要归因于它们的对称。有时一种形式上的差异,也会成为特殊的吸引人的品质。当我们看到一种图案或雕塑时,无须过分留意即能判定喜欢它或不喜欢它,而它的对称或差缺,大概是影响我们感觉的重要因素。
数学中也充满对称。从数学观点看,如果能找到一条直线,它分一个对象为两个全等的部分,或者沿这条直线折叠,能使其中的一部分与另一部分完全重合,那么这一对象就被认为是关于这条直线为轴对称。在几何中,具有这种性质的图形很多,例如,线段、角、等腰三角形、矩形、菱形、正方形、圆等等。在代数中,一个函数的反函数能够由改变X和Y坐标的位置来实现。用相应的方程可以绘制出一个函数和它反函数的图像,它们是关于直线y=x对称的。类似地,如果能找到一个点,使一个对象绕着这个点转动180°,还能和原来重合,那么这一对象就被认为是关于这个点中心对称。在几何中,具有这种性质的图形也很多。如线段、平行四边形、圆等等。
从数学上看真正的对称性是与某种变换或某种操作下的不变性联系在一起的。例如,一个图形具有左右(轴)对称性,那么它在反射的操作下仍然重合到它本身。一个圆、一个球,在转动之下,我们仍然得到同一的圆和球,这就是转动(中心)对称性。这两种对称性,我们看起来还是比较直观的。还有一种对称性,看起来就不那么直观了,那就是平移对称性。三角形的所有性质几乎都是与它在空间里的位置无关的,也就是说,无论我们把三角形移到哪里,它的性质都保持。这么看,平移不变性是一种抽象的对称性,但它也有一种具体的背景,即三维的晶体和二维的壁纸,显然具有直观的对称性。(www.daowen.com)
对于具有对称性的几何图形,数学研究的问题是什么呢?主要有以下三个:
1.两种对称图形,它们的对称性本质上是相同还是不同的?
2.对于各种对称性加以分类。
3.证明这种分类是完备的,也就是具有某种对称性的图形必定属于其中之一种。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。