理论教育 X射线衍射技术在实践中的应用

X射线衍射技术在实践中的应用

时间:2023-07-01 理论教育 版权反馈
【摘要】:由X射线衍射原理可知,物质的X射线衍射花样与物质内部的晶体结构有关。同时,根据X射线衍射试验还可以进行结晶物质的定量分析、晶粒大小的测量和晶粒的取向分析。目前,X射线衍射技术已经广泛应用于各个领域的材料分析与研究工作中。宏观应力的存在使部件内部的晶面间距发生改变,所以可以借助X射线衍射方法来测定材料部件中的应力。

X射线衍射技术在实践中的应用

由X射线衍射原理可知,物质的X射线衍射花样与物质内部的晶体结构有关。每种结晶物质都有其特定的结构参数(包括晶体结构类型,晶胞大小,晶胞中原子、离子或分子的位置和数目等)。因此,没有两种不同的结晶物质会给出完全相同的衍射花样。通过分析待测试样的X射线衍射花样,不仅可以知道物质的化学成分,还能知道它们的存在状态,即能知道某元素是以单质存在或者以化合物、混合物及同素异构体存在。同时,根据X射线衍射试验还可以进行结晶物质的定量分析、晶粒大小的测量和晶粒的取向分析。目前,X射线衍射技术已经广泛应用于各个领域的材料分析与研究工作中。

1.物相鉴定

物相鉴定是指确定材料由哪些相组成和确定各组成相的含量,主要包括定性相分析和定量相分析。每种晶体由于独特的结构都具有与之相对应的X射线特征谱,这是射线衍射物相分析的依据。将待测样品的衍射图谱和各种已知单相标准物质的衍射图谱对比,从而确定物质的相组成。确定相组成后,根据各相衍射峰的强度正比于该组分含量(需要做吸收校正者除外),就可对各种组分进行定量分析。

2.点阵参数的测定

点阵参数是物质的基本结构参数,任何一种晶体物质在一定状态下都有一定的点阵参数。测定点阵参数在研究固态相变、确定固溶体类型、测定固溶体溶解度曲线、测定热膨胀系数等方面都得到了应用。点阵参数的测定是通过X射线衍射峰位置的测定而获得的,通过测定衍射花样中每一条衍射线的位置均可得出一个点阵常数值。

3.微观应力的测定

微观应力是指由于形变、相变、多相物质的膨胀等因素引起的存在于材料内各晶粒之间或晶粒之中的微区应力。当一束X射线入射到具有微观应力的样品上时,由于微观区域应力取向不同,各晶粒的晶面间距产生了不同的应变,即在某些晶粒中晶面间距扩张,而在另一些晶粒中晶面间距压缩,结果使其衍射线并不像宏观内应力所影响的那样,单一地向某一方向位移,而是在各方向上平均地位移,总的效应是导致衍射线漫散宽化。材料的微观残余应力是引起衍射峰宽化的主要原因,因此衍射峰的半峰宽(The Full Width at Half Maximum,FWHM),即衍射线最大强度一半处的宽度是描述微观残余应力的基本参数。

4.宏观应力的测定

在材料部件宏观尺度范围内存在的内应力分布在它的各个部分,相互间保持平衡,这种内应力称为宏观应力。宏观应力的存在使部件内部的晶面间距发生改变,所以可以借助X射线衍射方法来测定材料部件中的应力。按照布拉格定律可知,在一定波长辐射发生衍射的条件下,晶面间距的变化导致衍射角的变化,测定衍射角的变化即可算出宏观应变,因而可进一步计算得到应力大小。总之,X射线衍射测定应力的原理是以测量衍射线位移作为原始数据,所测得的结果实际上是应变,而应力则是通过虎克定律由应变计算得到。(www.daowen.com)

5.纳米材料粒径的表征

纳米材料的颗粒度与其性能密切相关。纳米材料由于颗粒细小,极易形成团粒,采用通常的粒度分析仪往往会给出错误的数据。采用X射线衍射线线宽法(谢乐法)可以测定纳米粒子的平均粒径。

6.结晶度的测定

结晶度是影响材料性能的重要参数。在一些情况下,物质结晶相和非晶相的衍射图谱往往会重叠。结晶度的测定主要是根据结晶相的衍射图谱面积与非晶相图谱面积的比,在测定时必须将晶体相、非晶相及背景不相干散射分离开。

7.晶体取向及织构的测定

晶体取向的测定又称为单晶定向,就是找出晶体样品中晶体学取向与样品外坐标系的位向关系。虽然可以用光学方法等物理方法确定单晶取向,但X衍射法不仅可以精确地单晶定向,同时还能得到晶体内部微观结构的信息。

一般用劳埃法单晶定向,其根据是底片上劳埃斑点转换的极射赤面投影与样品外坐标轴的极射赤面投影之间的位置关系。透射劳埃法只适用于厚度小且吸收系数小的样品,背射劳埃法就无需特别制备样品,样品厚度大小等也不受限制,因而多用此方法。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈