【摘要】:图1-12基尔霍夫电压定律KCL是电荷守恒法则运用于集总参数电路的结果;KVL是能量守恒法则和电荷守恒法则运用于集总参数电路的结果。这些约束关系与构成电路的元件性质无关,即无论是电阻、电容、电感还是电源,也无论是线性元件还是非线性元件,KCL、KVL只与电路的拓扑结构有关,而与支路特性无关。可列出(n-1)个独立的KCL方程。对于KVL来说,有几个网孔,就可以列几个KVL方程,去掉一个方程组就是独立的。
图1-12 基尔霍夫电压定律
KCL是电荷守恒法则运用于集总参数电路的结果;KVL是能量守恒法则和电荷守恒法则运用于集总参数电路的结果。二者分别表明支路电流之间及支路电压之间的约束关系。这些约束关系与构成电路的元件性质无关,即无论是电阻、电容、电感还是电源,也无论是线性元件还是非线性元件,KCL、KVL只与电路的拓扑结构有关,而与支路特性无关。
电路中的节点和支路的数量之间存在一些关系,若电路的支路数是b,节点数是n,则:
(1)独立节点数是(n-1)。
(2)可列出(n-1)个独立的KCL方程。
(3)可列出L个独立的KVL方程,设L =b -(n-1)=b -n+1。
例1 - 4 图1 - 13所示电路有4个节点、6条支路,依次对a、b、c、d四个节点运用KCL可得:
(www.daowen.com)
将这4个方程相加,结果为0=0,说明方程组不独立,实际上任意舍去一个方程,余下的方程就是独立的了。
例1 - 5 图1 - 14中共有4个网孔,对各个网孔的回路依次运用KVL可得:
图1-13 例1-4图
图1-14 例1-5图
同样地,将这4个方程相加,结果为0 = 0,说明方程组不独立。对于KVL来说,有几个网孔,就可以列几个KVL方程,去掉一个方程组就是独立的。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。
有关智能开源硬件基础的文章