(1)激光切割机定义及特点
激光切割机是将从激光器发射出的激光,经光路系统,聚焦成高功率密度的激光束。激光束照射到工件表面,使工件达到熔点或沸点,同时与光束同轴的高压气体将熔化或气化金属吹走。随着光束与工件相对位置的移动,最终使材料形成切缝,从而达到切割的目的。
激光切割加工是用不可见的光束代替了传统的机械刀,具有精度高、切割快速、不局限于切割图案限制、自动排版节省材料、切口平滑及加工成本低等特点,将逐渐改进或取代于传统的金属切割工艺设备。激光刀头的机械部分与工件无接触,在工作中不会对工件表面造成划伤;激光切割速度快,切口光滑平整,一般无须后续加工;切割热影响区小,板材变形小,切缝窄(0.1~0.3mm);切口没有机械应力,无剪切毛刺;加工精度高,重复性好,不损伤材料表面;数控编程,可加工任意的平面图,可对幅面很大的整板切割,无须开模具,经济省时。
(2)主要工艺
1)汽化切割
在激光气化切割过程中,材料表面温度升至沸点温度的速度是如此之快,足以避免热传导造成的熔化,于是部分材料汽化成蒸气消失,部分材料作为喷出物从切缝底部被辅助气体流吹走。在此情况下,就需要非常高的激光功率。
为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排出的情况下。该加工实际上只用于铁基合金很小的使用领域。
该加工不能用于像木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。在激光气化切割中,最优光束聚焦取决于材料厚度和光束质量。激光功率和汽化热对最优焦点位置只有一定的影响。在板材厚度一定的情况下,最大切割速度反比于材料的汽化温度。所需的激光功率密度要大于108W/cm2,并且取决于材料、切割深度和光束焦点位置。在板材厚度一定的情况下,假设有足够的激光功率,最大切割速度受到气体射流速度的限制。
2)熔化切割
在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称为激光熔化切割。
激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参与切割。激光熔化切割可得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。产生熔化但不到气化的激光功率密度,对于钢材料来说,在104~105W/cm2。
3)氧化熔化切割(激光火焰切割)
熔化切割一般使用惰性气体,如果代之以氧气或其他活性气体,材料在激光束的照射下被点燃,与氧气发生激烈的化学反应而产生另一热源,使材料进一步加热,称为氧化熔化切割。
由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可使用脉冲模式的激光来限制热影响,激光的功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。
4)控制断裂切割
对于容易受热破坏的脆性材料,通过激光束加热进行高速、可控的切断,称为控制断裂切割。这种切割过程主要内容是:激光束加热脆性材料小块区域,引起该区域大的热梯度和严重的机械变形,导致材料形成裂缝。只要保持均衡的加热梯度,激光束可引导裂缝在任何需要的方向产生。
(3)关键技术
1)焦点位置控制技术
激光切割的优点之一是光束的能量密度高,一般10W/cm2。由于能量密度与面积成反比,所以焦点光斑直径尽可能的小,以便产生一窄的切缝;同时焦点光斑直径还和透镜的焦深成正比。聚焦透镜焦深越小,焦点光斑直径就越小。但切割有飞溅,透镜离工件太近容易将透镜损坏,因此一般大功率CO2激光切割机工业应用中广泛采用5〞~7.5〞(127~190mm)的焦距。实际焦点光斑直径为0.1~0.4mm。对于高质量的切割,有效焦深还和透镜直径及被切材料有关。例如,用5in的透镜切碳钢,焦深为焦距的2%范围内。因此控制焦点相对于被切材料表面的位置十分重要。顾虑到切割质量、切割速度等因素,原则上6mm的金属材料,焦点在表面上;6mm的碳钢,焦点在表面之上;6mm的不锈钢,焦点在表面之下。具体尺寸由实验确定。
在工业生产中确定焦点位置的简便方法有以下3种:
①打印法
使切割头从上往下运动,在塑料板上进行激光束打印,打印直径最小处为焦点。
②斜板法
用和垂直轴成一角度斜放的塑料板使其水平拉动,寻找激光束的最小处为焦点。
③蓝色火花法
去掉喷嘴,吹空气,将脉冲激光打在不锈钢板上,使切割头从上往下运动,直至蓝色火花最大处为焦点。
2)切割穿孔技术
任何一种热切割技术,除少数情况可从板边缘开始外,一般都必须在板上穿一小孔。首先在激光冲压复合机上是用冲头先冲出一孔,然后再用激光从小孔处开始进行切割。对于没有冲压装置的激光切割机有以下两种穿孔的基本方法:(www.daowen.com)
①爆破穿孔
材料经连续激光的照射后在中心形成一凹坑,然后由与激光束同轴的氧流很快将熔融材料去除形成一孔。一般孔的大小与板厚有关,爆破穿孔平均直径为板厚的一半,因此对较厚的板爆破穿孔孔径较大,且不圆,不宜在要求较高的零件上使用(如石油筛缝管),只能用于废料上。此外由于穿孔所用的氧气压力与切割时相同,飞溅较大。
②脉冲穿孔
采用高峰值功率的脉冲激光使少量材料熔化或汽化,常用空气或氮气作为辅助气体,以减少因放热氧化使孔扩展,气体压力较切割时的氧气压力小。每个脉冲激光只产生小的微粒喷射,逐步深入,因此厚板穿孔时间需要几秒钟。一旦穿孔完成,立即将辅助气体换成氧气进行切割。这样穿孔直径较小,其穿孔质量优于爆破穿孔。为此所使用的激光器不但应具有较高的输出功率;更重要的时光束的时间和空间特性,因此一般横流CO2激光器不能适应激光切割的要求。
此外,脉冲穿孔还须要有较可靠的气路控制系统,以实现气体种类、气体压力的切换及穿孔时间的控制。在采用脉冲穿孔的情况下,为了获得高质量的切口,从工件静止时的脉冲穿孔到工件等速连续切割的过渡技术应以重视。从理论上讲,通常可改变加速段的切割条件,如焦距、喷嘴位置、气体压力等,但实际上由于时间太短改变以上条件的可能性不大。在工业生产中主要采用改变激光平均功率的办法比较现实,具体方法有以下3种:改变脉冲宽度;改变脉冲频率;同时改变脉冲宽度和频率。实际结果表明,第三种效果最好。
3)喷嘴设计及气流控制技术
激光切割钢材时,氧气和聚焦的激光束是通过喷嘴射到被切材料处,从而形成一个气流束。对气流的基本要求是进入切口的气流量要大,速度要高,以便足够的氧化使切口材料充分进行放热反应,同时又有足够的动量将熔融材料喷射吹出。因此,除光束的质量及其控制直接影响切割质量外,喷嘴的设计及气流的控制(如喷嘴压力、工件在气流中的位置等)也是十分重要的因素。
(4)工艺对比
其工艺对比见表7.5。
表7.5 工艺对比
(5)材料分析
随着激光切割技术的发展,激光切割运用的领域也越来越广泛,适用的材料也越来越多。但是不同的材料具有不同的特性。因此,在使用激光切割时需要注意的事项也不同。
1)结构钢
该材料用氧气切割时会得到较好的结果。当用氧气作为加工气体时,切割边缘会轻微氧化。对于厚度达4mm的板材,可用氮气作为加工气体进行高压切割。这种情况下,切割边缘不会被氧化。厚度在10mm以上的板材,对激光器使用特殊极板并且在加工中给工件表面涂油可得到较好的效果。
2)不锈钢
切割不锈钢需要:使用氧气,在边缘氧化不要紧的情况下;使用氮气,以得到无氧化无毛刺的边缘,就不需要再作处理了。在板材表面涂层油膜会得到更好的穿孔效果,而不降低加工质量。
3)铝
尽管有高反射率和热传导性,厚度6mm以下的铝材可以切割,这取决于合金类型和激光器能力。当用氧切割时,切割表面粗糙而坚硬。用氮气时,切割表面平滑。纯铝因为其高纯非常难切割,只有在系统上安装有“反射吸收”装置时才能切割铝材,否则反射会毁坏光学组件。
4)钛
钛板材用氩气和氮气作为加工气体来切割。其他参数可参考镍铬钢。
5)铜和黄铜
两种材料都具有高反射率和非常好的热传导性。厚度1mm以下的黄铜可用氮气切割;厚度2mm以下的铜均可切割,加工气体必须用氧气。只有在系统上安装有“反射吸收”装置时,才能切割铜和黄铜,否则反射会毁坏光学组件。
6)合成材料
切割合成材料时,要牢记切割的危险和可能排放的危险物质。可加工的合成材料有热塑性塑料、热硬化材料和人造橡胶。
7)有机物
在所有有机物切割中都存在着着火的危险(用氮气作为加工气体,也可用压缩空气作为加工气体)。木材、皮革、纸板和纸可用激光切割,切割边缘会烧焦(褐色)。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。