【摘要】:SLIQ算法对C4.5决策树分类算法的实现方法进行了改进,在决策树的构造过程中采用了“预排序”和“广度优先策略”两种技术。为此,SLIQ算法采用了预排序技术。SLIQ算法由于采用了上述两种技术,使得该算法能够处理比C4.5大得多的训练集,在一定范围内具有良好的随记录个数和属性个数增长的可伸缩性。
SLIQ算法(Supervised Learning In Quest)对C4.5决策树分类算法的实现方法进行了改进,在决策树的构造过程中采用了“预排序”和“广度优先策略”两种技术。
(1)预排序。对于连续属性在每个内部结点寻找其最优分裂标准时,都需要对训练集按照该属性的取值进行排序,而排序是很浪费时间的操作。为此,SLIQ算法采用了预排序技术。所谓预排序,就是针对每个属性的取值,把所有的记录按照从小到大的顺序进行排序,以消除在决策树的每个结点对数据集进行的排序。具体实现时,需要为训练数据集的每个属性创建一个属性列表,为类别属性创建一个类别列表。
(2)广度优先策略。在C4.5算法中,树的构造是按照深度优先策略完成的,需要对每个属性列表在每个结点处都进行一遍扫描,费时很多,为此,SLIQ采用广度优先策略构造决策树,即在决策树的每一层只需对每个属性列表扫描一次,就可以为当前决策树中每个叶子结点找到最优分裂标准。所谓广度优先,即输入样本后,一层一层的分裂属性,优先访问一层结点。
SLIQ算法由于采用了上述两种技术,使得该算法能够处理比C4.5大得多的训练集,在一定范围内具有良好的随记录个数和属性个数增长的可伸缩性。(www.daowen.com)
然而它仍然存在如下缺点:
(1)由于需要将类别列表存放于内存,而类别列表的元组数与训练集的元组数是相同的,这就在一定程度上限制了可以处理的数据集的大小。
(2)由于采用了预排序技术,而排序算法的复杂度本身并不是与记录个数呈线性关系,因此,使得SLIQ算法不可能达到随记录数目增长的线性可伸缩性。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。
有关增量式自适应大数据挖掘算法的文章