理论教育 探究大数据技术的应用和发展

探究大数据技术的应用和发展

时间:2023-06-16 理论教育 版权反馈
【摘要】:③数据归约是在不损害分析结果准确性的前提下降低数据集规模,使之简化,包括维归约、数据归约、数据抽样等技术,这一过程有利于提高大数据的价值密度,即提高大数据存储的价值性。总之,数据预处理环节有利于提高大数据的一致性、准确性、真实性、可用性、完整性、安全性和价值性等方面质量,而大数据预处理中的相关技术是影响大数据过程质量的关键因素。图1-20大数据核心技术分布式处理。

探究大数据技术的应用和发展

1.大数据的基本处理流程

数据处理流程主要包括数据收集、数据预处理、数据存储、数据处理与分析、数据展示/数据可视化、数据应用等环节,如图1-19所示。其中数据质量贯穿于整个大数据流程,每一个数据处理环节都会对大数据质量产生影响作用。

图1-19 大数据处理基本流程

(1)数据收集。在数据收集过程中,数据源会影响大数据质量的真实性、完整性、一致性、准确性和安全性。对于Web数据,多采用网络爬虫方式进行收集,这需要对爬虫软件进行时间设置以保障收集到的数据时效性质量。比如可以利用易海聚采集软件的增值API设置,灵活控制采集任务的启动和停止。

(2)数据预处理。大数据采集过程中通常有一个或多个数据源,这些数据源包括同构或异构的数据库、文件系统、服务接口等,易受到噪声数据、数据值缺失、数据冲突等影响,因此需首先对收集到的大数据集合进行预处理,以保证大数据分析与预测结果的准确性与价值性。

大数据的预处理环节主要包括数据清理、数据集成、数据归约与数据转换等内容,可以大大提高大数据的总体质量,是大数据过程质量的体现。

①数据清理技术包括对数据的不一致检测、噪声数据的识别、数据过滤与修正等方面,有利于提高大数据的一致性、准确性、真实性和可用性等方面的质量。

②数据集成则是将多个数据源的数据进行集成,从而形成集中、统一的数据库、数据立方体等,这一过程有利于提高大数据的完整性、一致性、安全性和可用性等方面的质量。

③数据归约是在不损害分析结果准确性的前提下降低数据集规模,使之简化,包括维归约、数据归约、数据抽样等技术,这一过程有利于提高大数据的价值密度,即提高大数据存储的价值性。

④数据转换处理包括基于规则或元数据的转换、基于模型与学习的转换等技术,可通过转换实现数据统一,这一过程有利于提高大数据的一致性和可用性。

总之,数据预处理环节有利于提高大数据的一致性、准确性、真实性、可用性、完整性、安全性和价值性等方面质量,而大数据预处理中的相关技术是影响大数据过程质量的关键因素。

(3)数据处理与分析。

①数据处理。大数据的分布式处理技术与存储形式、业务数据类型等相关,针对大数据处理的主要计算模型有Map Reduce分布式计算框架、分布式内存计算系统、分布式流计算系统等。Map Reduce是一个批处理的分布式计算框架,可对海量数据进行并行分析与处理,它适合对各种结构化、非结构化数据的处理。分布式内存计算系统可有效减少数据读写和移动的开销,提高大数据处理性能。分布式流计算系统则是对数据流进行实时处理,以保障大数据的时效性和价值性。

总之,无论哪种大数据分布式处理与计算系统,都有利于提高大数据的价值性、可用性、时效性和准确性。大数据的类型和存储形式决定了其所采用的数据处理系统,而数据处理系统的性能与优劣直接影响大数据质量的价值性、可用性、时效性和准确性。因此在进行大数据处理时,要根据大数据类型选择合适的存储形式和数据处理系统,以实现大数据质量的最优化

②数据分析。大数据分析技术主要包括已有数据的分布式统计分析技术和未知数据的分布式挖掘、深度学习技术。分布式统计分析可由数据处理技术完成,分布式挖掘和深度学习技术则在大数据分析阶段完成,包括聚类与分类、关联分析、深度学习等,可挖掘大数据集合中的数据关联性,形成对事物的描述模式或属性规则,可通过构建机器学习模型和海量训练数据提升数据分析与预测的准确性。

数据分析是大数据处理与应用的关键环节,它决定了大数据集合的价值性和可用性,以及分析预测结果的准确性。在数据分析环节,应根据大数据应用情境与决策需求,选择合适的数据分析技术,提高大数据分析结果的可用性、价值性和准确性质量。

(4)数据可视化与应用环节。(www.daowen.com)

①数据可视化是指将大数据分析与预测结果以计算机图形或图像的直观方式显示给用户的过程,并可与用户进行交互式处理。数据可视化技术有利于发现大量业务数据中隐含的规律性信息,以支持管理决策。数据可视化环节可大大提高大数据分析结果的直观性,便于用户理解与使用,故数据可视化是影响大数据可用性和易于理解性质量的关键因素。

②大数据应用是指将经过分析处理后挖掘得到的大数据结果应用于管理决策、战略规划等的过程,它是对大数据分析结果的检验与验证,大数据应用过程直接体现了大数据分析处理结果的价值性和可用性。大数据应用对大数据的分析处理具有引导作用。

在大数据收集、处理等一系列操作之前,通过对应用情境的充分调研、对管理决策需求信息的深入分析,可明确大数据处理与分析的目标,从而为大数据收集、存储、处理、分析等过程提供明确的方向,并保障大数据分析结果的可用性、价值性和用户需求的满足。

2.大数据关键技术

大数据有两大核心技术:分布式存储和分布式处理,如图1-20所示。

(1)分布式存储。分布式存储系统,是将数据分散存储在多台独立的设备上。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。

比如,Google大约管理着超过50万台服务器和100万块硬盘,而且Google还在不断扩大计算能力和存储能力。其中,很多的计算能力和存储能力的扩展都是在廉价服务器和普通存储硬盘的基础上进行的。这大大降低了其服务成本。因此,可以将更多的资金投入到技术研发之中。

图1-20 大数据核心技术

(2)分布式处理。分布式处理系统,可以将不同地点的或具有不同功能的或拥有不同数据的多台计算机(或服务器)用通信网络连接起来,在控制系统的统一管理控制下,协调地完成信息处理任务。

Map Reduce是一种云计算的核心计算模式,一种分布式运算技术,也是一种简化的分布式编程模式。

Map Reduce模式的主要思想是:首先将数据自动分割的、要执行的问题(例如程序)拆解成Map(映射)和Reduce(化简)的方式;在数据被分割以后,通过Map函数的程序将数据映射成不同的区块,分配给计算机机群(或服务器集群)进行处理,达到分布式运算的效果;然后再通过Reduce函数的程序将运算结果汇总整理,最后输出开发者需要的结果。

Hadoop是一个实现了Map Reduce计算模式的、能够对大量数据进行分布式处理的软件框架。它是以一种可靠、高效、可伸缩的方式进行大量数据处理的。

3.大数据技术的应用发展前景

(1)大数据自身能够创造出更多的价值。大数据相关技术紧紧围绕数据价值化展开,数据价值化将开辟出广大的市场空间,重点在于数据本身将为整个信息化社会赋能。随着大数据的落地应用,大数据的价值将逐渐得到体现。目前在互联网领域,大数据技术已经得到了较为广泛的应用。

(2)大数据推动科技领域的发展。大数据的发展正在推动科技领域的发展进程,大数据的影响不仅仅体现在互联网领域,也体现在金融教育医疗等诸多领域。在人工智能研发领域,大数据也起到了重要的作用,尤其在机器学习、计算机视觉和自然语言处理等方面,大数据正在成为智能化社会的基础。

(3)大数据产业链逐渐形成。经过近些年的发展,大数据已经初步形成了一个较为完整的产业链,包括数据采集、整理、传输、存储、分析、呈现和应用,众多企业开始参与到大数据产业链中,并形成了一定的产业规模,相信随着大数据的不断发展,相关产业规模会进一步扩大。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈