新形势下发展数字经济需要推动大数据与云计算、物联网、移动互联网等新一代信息技术融合发展,探索大数据与传统产业协同发展的新业态、新模式,促进传统产业转型升级和新兴产业发展,培育新的经济增长点。
(一)大数据驱动工业转型升级
推动大数据在工业研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链全流程各环节的应用,分析感知用户需求,提升产品附加价值,打造智能工厂。建立面向不同行业、不同环节的工业大数据资源聚合和分析应用平台,抓住互联网跨界融合机遇,促进大数据、物联网、云计算和三维(3D)打印技术、个性化定制等在制造业全产业链集成运用,推动制造模式变革和工业转型升级。
(二)大数据催生新兴产业
大力培育互联网金融、数据服务、数据探矿、数据化学、数据材料、数据制药等新业态,提升相关产业大数据资源的采集获取和分析利用能力,充分发掘数据资源支撑创新的潜力,带动技术研发体系创新、管理方式变革、商业模式创新和产业价值链体系重构,推动跨领域、跨行业的数据融合和协同创新,促进战略性新兴产业发展、服务业创新发展和信息消费扩大,探索形成协同发展的新业态、新模式,培育新的经济增长点。
构建面向农业农村的综合信息服务体系,为农民生产生活提供综合、高效、便捷的信息服务,缩小城乡数字鸿沟,促进城乡发展一体化。加强农业农村经济大数据建设,完善村、县相关数据采集、传输、共享基础设施,建立农业农村数据采集、运算、应用、服务体系,强化农村生态环境治理,增强乡村社会治理能力。统筹国内、国际农业数据资源,强化农业资源要素数据的集聚利用,提升预测预警能力。结合构建国家涉农大数据中心,推进各地区、各行业、各领域涉农数据资源的共享开放,加强数据资源发掘运用。加快农业大数据关键技术研发,加大示范力度,提高生产智能化、经营网络化、管理高效化、服务便捷化能力和水平。(www.daowen.com)
(四)推进基础研究和核心技术攻关
围绕数据科学理论体系、大数据计算系统与分析理论、大数据驱动的颠覆性应用模型探索等重大基础研究进行前瞻布局,开展数据科学研究,引导和鼓励在大数据理论、方法及关键应用技术等方面展开探索。同时采取政产学研用相结合的协同创新模式和基于开源社区的开放创新模式,加强海量数据存储、数据清洗、数据分析发掘、数据可视化、信息安全与隐私保护等领域关键技术攻关,形成安全可靠的大数据技术体系。支持自然语言理解、机器学习、深度学习等人工智能技术创新,提升数据分析处理能力、知识发现能力和辅助决策能力。
(五)形成大数据产品体系和产业链
围绕数据采集、整理、分析、发掘、展现、应用等环节,支持大型通用海量数据存储与管理软件、大数据分析发掘软件、数据可视化软件等软件产品和海量数据存储设备、大数据一体机等硬件产品发展,带动芯片、操作系统等信息技术核心基础产品发展,打造较为健全的大数据产品体系。大力发展与重点行业领域业务流程及数据应用需求深度融合的大数据解决方案。
支持企业开展基于大数据的第二方数据分析发掘服务、技术外包服务和知识流程外包服务。鼓励企业根据数据资源基础和业务特色,积极发展互联网金融和移动金融等新业态。推动大数据与移动互联网、物联网、云计算的深度融合,深化大数据在各行业的创新应用,积极探索创新协作共赢的应用模式和商业模式。加强大数据应用创新能力建设,建立政产学研用联动、大中小企业协调发展的大数据产业体系。建立和完善大数据产业公共服务支撑体系,组建大数据开源社区和产业联盟,促进协同创新,加快计量、标准化、检验检测和认证认可等大数据产业质量技术基础建设,加速大数据应用普及。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。