从落实国家能源发展战略、解决能源支撑我国经济社会发展、推进全球能源可持续发展等重大问题,“十三五”期间,在电网方面,以逐步提高可再生能源发电量在总用电量中的比例为核心目标,需要重点开展智能电网重大技术研发,超前部署我国新一代能源系统及全球能源互联网关键技术研究;在发电方面,以优化能源结构、提高非化石能源占一次能源消费比重为目标,重点发展水力发电、安全发展核电技术。“十三五”期间,我国电力科技领域将重点开展9个重大技术方向的38项关键技术研究工作。
1.智能电网技术
智能电网已经成为全球电网发展和进步的大趋势,欧美等发达国家已经将其上升为国家战略。我国在智能电网关键技术、装备和示范应用方面具有良好的发展基础和国际竞争力。智能电网技术体系涵盖发电、输电、变电、配电、用电和调度等多个环节。
(1)大规模可再生能源并网调控技术
目前,我国可再生能源发电并网容量已处于世界前列,风电和光伏发电累计并网容量分别跃居全球第一和第二位。但风电与光伏发电的间歇性与随机性特征,难以适应电力生产消费的同时性要求,全国范围内部分时段存在弃风、弃光问题,需要在大容量储能技术的核心指标上取得重大突破。
重点突破大规模可再生能源基地电力外送与调控、大规模分布式能源灵活并网运行控制、常规/供热机组调节能力提升与弹性控制、新型大容量电力储存、海洋平台电力系统互联与稳定控制、海上风电/光伏发电接入与送出等一批核心关键技术。
(2)大电网柔性互联技术
这方面我国已具备一定的技术基础和工程经验,存在主要问题是大容量、远距离输电能力仍显不足,适用于特殊场合的新型输电技术和更高电压等级的柔性直流输电技术尚待突破。
重点突破500 kV以下基于架空线的柔性直流输电技术,重点研发大容量柔性直流转换器等先进输变电设备;2020年,研制超高压柔性直流输电及组网成套装备。
(3)现代配电网多元用户供需互动用电技术
随着配电网可再生分布式能源发电的高比例接入、大容量电动汽车充电设施的普遍设立,电网负荷峰谷差更加难以调整,传统的被动型配电网将难以适应这些新的需求与变化,需要采用主动配电网技术解决现代配电网建设中遇到的新问题。
重点突破主动配电网规划技术、配电网与用户互动技术、高功率电动汽车充电的配电网适应性技术等。示范应用智能用电、电动汽车充电及电池梯级利用工程和新型电能替代设备。
(4)储能新技术
目前抽水蓄能电站是电力系统大规模储能的主要形式,但抽水蓄能电站受地理位置和水资源的限制,随着新型储能电池研究的深入发展,“十三五”期间将是新型化学储能技术逐步向大容量、高效率、长寿命发展阶段,并有望进入商业化应用。
重点研究新型化学储能技术:针对大规模可再生能源消纳的新型化学储能系统应用技术;功率为兆瓦级的新型电能与其他能源形式的转化装备;重点突破用于电力储能的百兆瓦级新型化学储能系统的集成与监控关键技术。
2.我国新一代能源系统技术
能源开发实施清洁替代,能源消费实施电能替代,是人类用能模式的发展趋势与终极目标。构建新一代能源系统,需要重点研究解决源端、受端和传输的一系列重大科学和工程技术问题。
(1)源端综合能源电力系统关键技术
我国国民经济和能源电力发展面临严峻形势,化石能源带来严重雾霾,急需大规模、高比例开发利用可再生能源。需要寻求消纳具有间歇性、随机性的可再生能源的综合解决方案,构建以可再生能源为主的源端综合能源电力系统。
重点研究以电网为主干、涵盖大规模可再生能源的综合能源电力系统仿真技术,示范应用可再生能源制氢工程。
(2)受端综合能源电力系统关键技术
传统电力系统不支持多种一次和二次能源相互转化和互补,既难以支撑高比例分布式清洁能源电力接入电力系统,又不适应大量分布式光伏发电、小型风电、冷热电三联供、电动汽车、蓄电池、氢能等“即插即用”式设备的接入。
重点研究受端综合能源电力系统规划运行技术,2020年掌握受端多种能源网融合规划、高渗透分布式能源接入和利用的一系列关键技术。构建受端综合能源电力系统仿真平台。建成多个冷、热、电综合能源电力系统的示范工程。
(3)未来我国西部直流电网技术
我国西部直流电网目前仅为概念构想,利用前沿输电技术将西南地区的水能、“三北”地区的太阳能和风能汇集并连接成多个地区性直流电网,利用输电技术及直流电压变换技术送往中东部负荷中心区域,提高电压等级和输电容量是直流网络需要解决的关键问题。
重点研究直流组网的理论和技术,2020年开展示范应用西部多可再生能源基地直流网及送出工程的前期工作。
3.全球能源互联网技术
全球能源互联网技术是基于清洁能源主导、能源消费电气化和全球配置能源资源的思路,解决可再生能源大规模利用在空间和时间上扩展的前瞻性技术问题。“十三五”期间,需要研究全球能源互联网战略规划技术;重点突破适用于大容量、远距离输电技术,以及大电网安全稳定运行和控制技术等。
(1)全球能源互联网战略规划技术
全球能源互联网规模大、结构复杂,需要在规划分析理论、市场空间预测、电力流格局规划和特大规模电网结构设计等方面开展重点攻关。
2020年,建成全球风能、太阳能、海洋能等多种可再生能源资源数据库,客观和精确掌握全球可再生能源的资源储量、分布情况和可开发规模。
(2)大容量、远距离输电技术与装备
我国特高压交直流输电技术总体上处于国际领先水平。对于特高压直流的换流变压器、直流穿墙/换流变套管、直流场开关器件等高端装备少数核心器件的制造技术国内尚未完全掌握,需要“十三五”期间重点攻关。
2020年,研制成功±1 100 kV特高压直流穿墙套管,提升直流输电重大装备、核心部件的国产化水平,核心部件自制率达到70%—90%,建立特高压直流受端分层接入示范工程,建成±1 100 kV特高压直流输电示范工程。
4.高效清洁火力发电技术
发展高效、清洁、低碳的燃煤发电技术与清洁的燃气发电技术是我国经济社会发展的迫切要求和维护国家安全的重大战略需要。其发展方向一是提高煤炭的能源利用率,二是降低发电机组的污染物排放浓度和总量,三是减少CO2的排放强度。
(1)700℃超超临界发电的关键技术
700℃超超临界发电技术的发电效率接近50%,比600℃超超临界发电技术高4%。目前,欧美和日本等国家基本完成材料筛选及性能测试、大型铸件试验生产、高温部件验证平台制造、大型耐热合金部件验证的工作。我国在该项目上起步较晚,关键技术与国外存在差距。
我国将继续进行拥有自主知识产权的低成本、高强度高温合金材料的开发工作,锅炉受热面管材已在华能南京热电厂挂网运行。到2020年,形成具有核心竞争力的具有自主知识产权700℃超超临界燃煤发电技术,完成关键材料和关键部件的研制,完成600 MW等级700℃先进超超临界发电系统的方案设计,择机签订示范工程。
(2)超超临界循环流化床发电技术
白马600 MW超临界CFB锅炉示范工程的成功运行,标志着我国已经具备大型超临界CFB锅炉的设计制造能力。但与煤粉锅炉相比,循环流化床锅炉设备的利用率和效率偏低,同时实现火电厂污染物超低排放难度较大。
重点突破CFB锅炉烟气污染物超低排放技术,进一步提高CFB机组发电效率,到2017年掌握CFB锅炉烟气污染物超低排放技术;2020年完成600 MW等级超超临界CFB发电机组初步设计,效率和设备利用率达到同等级别煤粉锅炉水平。
(3)联合循环发电及煤基多联产技术
联合循环发电及煤基多联产系统是一种综合考虑资源、能源和环境效益系统,是未来主要的能源技术之一,是煤炭利用的发展趋势。
对于联合循环发电,目前第三代IGCC技术正在研发中,已建立的IGCC示范电站技术达到国际先进水平,但经济性和可靠性是影响其商业化的关键因素;对于煤基多联产国内外已开展了大量的生产流程与产品生产方式的创新研究,技术关键和难点仍是煤的热解和气化装置的开发。
重点研究以空气为气化剂的气化炉以及与其相应的IGCC系统,2017年,突破低阶煤干馏关键技术和设备,完成IGCC+CCUS技术和煤基多联产IGCC电站的可行性研究。2020年,建成以褐煤低温干馏为基础的煤电化工一体化示范工程。
(4)特种煤发电技术
我国一些地区存在大量有特殊成分的燃煤,如新疆准东煤田金属含量大、内蒙古的褐煤水分含量大,目前尚无大机组100%燃烧准东煤及褐煤的可靠技术方案,需要研究在600 MW等级机组上的应用并积累经验。
继续开展特种煤燃烧、结渣和沾污等特性参数研究、锅炉适应性研究。重点研发适合燃用高钠钾煤的燃烧技术与设备、预干煤燃烧技术与设备、制粉系统。掌握低成本褐煤干燥及水分回收技术,建设示范装置;2020年,建设高钠钾煤发电示范工程;掌握大型褐煤干燥发电技术,建设示范工程。
(5)燃煤电厂烟气污染物一体化脱除及二氧化碳捕集技术
煤电烟气污染物治理及处理物利用是煤电持续发展的关键因素,但传统烟气净化技术一般针对单一污染物处理,工艺链长、投资和运行成本高。二氧化碳捕集技术对减少温室效应及提高电厂综合效益有重要意义。污染物一体化控制技术国内已进行了大量研究,目前尚无示范工程;二氧化碳捕集技术降低能耗和成本是重点研究内容。
重点研发湿法一体化脱除系统、活性焦一体化联合脱除系统。重点研究新一代高效低能耗的二氧化碳捕集吸收剂和捕集材料,示范应用多种源汇组合的CCUS全流程系统,进行CCUS全过程技术示范。
(6)燃气轮机联合循环和微型燃机冷热电联供发电技术
燃气轮机联合循环(NGCC)已成为我国清洁能源发电技术的重要分支,但我国燃气轮机技术水平与发达国家差距巨大,核心部件以及专业技术服务均有国外制造商控制,价格居高不下。我国具有自主知识产权的100 kW微型燃气轮机研制已取得重大突破。
重型燃机重点开展H型燃机的系统集成研究,加快项目的示范应用;在F级燃机方面取得关键部件及技术的自主化突破。重点研发重型燃气轮机的试验验证平台。
(7)超临界CO2循环发电技术
超临界CO2透平是一种以超临界CO2为工质的基于布雷顿循环原理的动力发电设备,是一种比传统蒸汽轮机更为先进的发电装备,作为一种外燃机,其也可采用太阳能作为热源,由此也诞生了基于超临界CO2循环的光热发电技术。这种新型发动机的研发,美国目前走在世界的前列,并得到美国能源部的支持,因为此项技术在提高发电效率和降低成本方面有巨大的潜力。超临界CO2透平技术用于地面发电厂,除了体积小、重量轻之外,还可以不用水,适合荒漠缺水地区的应用,其应用于太阳能光热发电系统可实现效率的显著提升,是太阳能光热发电的理想选择,该系统仅需要较低的热量即可启动发电机,应对负荷变化调整迅速,支持快速启停,这些优点是普通发电系统所无法比拟的。
目前国内电力系统对超临界CO2循环技术研究处于起步阶段,但超临界CO2循环发电技术的研发和应用,将是一种可能带来发电系统变革的技术。
5.可再生能源发电及利用技术(www.daowen.com)
可再生能源是世界各国科技创新部署的重点,是未来能源电力技术发展的方向。当前,以可再生能源为支点的我国能源转型体系正加速变革,大力发展可再生能源已经上升到国家战略高度,未来我国可再生能源还将大规模发展。
(1)海上风力发电技术
我国海上风电综合实力整体较弱,机组容量以3 MW—4 MW为主,6 MW机组处于样机试验阶段,并且我国严重缺少海上风电施工经验、运行维护与专业监测亟须加强。
到2020年,形成具备8 MW及以上大型海上风机制造能力;突破海上风电施工和建设、并网运行关键技术;建成海上风电全景监视及综合控制系统。
(2)太阳能光热发电技术
我国太阳能光热发电起步较晚,在核心设备上与国外相比有很大差距,导致转换效率低,若使用国外产品则成本更高,由于投资成本高导致进展缓慢。
重点突破光热电厂系统集成技术和机组运行技术,重点研发熔盐吸热介质的槽式集热管、线性菲涅尔集热系统、太阳能超临界CO2布雷顿循环发电系统和设备;推广太阳能光热发电系统,2020年建成西部多个太阳能光热发电示范项目。
(3)可再生能源发电功率高精度预测技术
风电、光伏发电等可再生能源发电具有随机性、波动性特点,大规模可再生能源并网将对电网安全稳定运行带来影响,不利于可再生能源消纳。国内对可再生能源发电预测能力不足,应对复杂多变的资源条件、大规模可再生能源集群发电、极端天气事件等因素的准确度不高。
重点突破可再生能源资源数值模拟与气象预报技术,重点研发具有自主知识产权的高精度新一代可再生能源功率预测系统,显著提高可再生能源功率预测精度,以广泛用于电力调度机构、风电场和光伏电站。
(4)可再生能源发电优化调度技术
由于我国电源和电网结构特点,弃风弃光现象将在一段时间内继续存在,高比例可再生能源的调度运行技术有待进一步优化,具有不确定性的多种可再生能源联合优化调度技术有待进一步突破。
6.水力发电技术
我国的大坝设计和建设、地下大型洞室设计和建设、大型水轮发电机制造等技术均已跻身世界先进水平行列。未来水电发展重点将在高坝工程防震抗震技术、超高坝建设技术、大型地下洞室群关键技术、流域梯级水电站联合调度运行技术、环境保护、移民安置与生态修复技术、数字化、智能化等方向。
(1)超高坝建设技术
我国200米以上超高坝建设尚处于起步阶段,发展滞后国外20—50年。我国发展200米以上超高坝主要面临复杂性条件、缺乏技术标准、成套技术不成熟等挑战,需要联合协同攻关。
2020年,全面掌握超高坝建设关键技术。完成超高坝安全性评价方法与安全标准、高碾压混凝土坝施工技术要求和质量控制标准、超高土心墙堆石安全评价方法与安全标准制定。
(2)大型地下洞群关键技术
我国西部地区独特的环境使得地下洞群成为水电工程枢纽布置的最佳选择,地下洞群正朝着单机大容量、洞室大跨度、施工大规模和安全高要求的方向发展。
2020年,预期掌握大型地下洞群系统关键技术,解决地下洞群工程建设中所面临的关键科学技术难题。
(3)环境保护、移民安置与生态修复技术
水电开发与生态环境保护问题已经成为我国水电可持续发展的重要制约因素,梯级开发的累积影响、鱼类繁衍、栖息地保护技术不足直接影响水电开发。
2020年,掌握环境保护、移民安置与生态修复等关键技术,提出相应的环境保护对策措施,妥善处理好水电建设与环境保护的关系,实现合理开发水资源和维持河流生态系统功能。
(4)高性能大容量水电机组技术
根据规划和我国水电建设现状,2030—2050年,随着西藏水电的开发,将有四个千万kW级水电站的运行水头超过400米,最大水头达830米,超高水头和超大容量水电将成为我国水电发展的主要方向。实现高性能大容量水电机组及相应配套的自主设计、制造与安装,满足我国到2050年前后水电开发,特别是西藏水电开发的需要,新型超高水头和超大容量的高性能水电机组研制将成为我国水电设备科研及制造的主攻方向。
(5)数字化、智能化水电与研发
国家防汛抗旱总指挥部组织建设了七大流域的三维电子江河系统,中国水电工程顾问集团公司开展了“中国数字水电”基础信息工程建设,2020年,掌握数字化、智能化水电站研发系列关键技术,建成海量空间数据处理及基础、专业数据库体系及基础信息平台。
7.先进核能发电技术
核能发电是我国能源战略的重要选择,核能技术是我国少数几个在世界上有望获得核心竞争力的高新技术领域之一,核电“走出去”作为国家战略部署的态势已逐渐明确。“十三五”期间,我国核电技术需要重点攻关和提高第三代压水堆核电技术和装备、研究开发第四代核电技术以及模块化小型核反应堆技术等。
(1)第三代大型先进核电技术及装备
第三代核电已逐渐成为国内外核电发展的主流,我国压水堆设计、建设和运行管理水平已走在世界前列,具备自主设计建设第三代核电机组能力。
我国正在研发的具有自主知识产权的“华龙一号”已获国家批准开工建设;CAP1400正等待国家审批;正在建设的山东石岛湾高温气冷堆核电站示范工程是我国核电重大专项的重要成果之一,为发展第四代核电技术奠定基础。
2020年,我国将完善大型先进压水堆的各个环节,实现自主化、国产化,不受制于人,具备以完全拥有自主知识产权的中国核电品牌走向国际市场的能力,彻底解决核废料安全处置问题。
(2)第四代核电技术
第四代先进核反应堆共确定六种堆型,其中三种是快中子反应堆,钠冷快堆是其中技术最成熟的一种,其技术先进具备大规模工业开发基础。
我国快堆正处于实验阶段,目前在示范应用、运行经验、建设掌握等方面整体水平低于俄罗斯、美国、法国和日本。到2020年,掌握第四代核电关键技术和先进反应堆的方案设计。
(3)模块化小型核反应堆技术
小型堆具有安全性高、适用性广、占地小、建设周期短、投资低等特点,在发电同时可为工业供汽、城市供热、海水淡化提供蒸汽,实现电、热、水联产;也可应用于海岛、海上平台及大型船舶。
我国自20世纪80年代开始小型反应堆技术研究,但一些关键设备制造与国外还有一定差距,2020年,掌握小型模块化反应堆动态运行和控制技术,示范应用于北方城市集中供热、沿海海水淡化等。
8.系统能效提升技术
(1)多能源超大系统协同增效及综合能量管理技术
能源系统要充分利用信息时代处理“大数据”的优势,力争在最大程度上实现能源系统协同优化设计,提高能源利用效率。一方面,未来能源系统的分布式、小规模开发利用成为重要方向;另一方面,消费者同时又可能是生产者,能源普遍服务将成为可能。在城镇、农村及边远地区公共设施、公用建筑物、居民住宅等领域,大力发展分布式光伏、水电、太阳能、天然气冷热电联供、余热余压发电等资源综合利用进行示范和推广,实现能源多渠道供应和多层次开发。
(2)火电厂余热利用和海水淡化集成优化
成本高是制约海水淡化推广应用的瓶颈,热法海水淡化抽汽成本占到40%左右,火力发电很多低品位余热能与海水淡化用能存在互补性,将两者集成是当今国内外大型海水淡化工程建设的新模式,但存在温度合理匹配问题及对环境变化和机组负荷变化的响应特性的问题,需要进一步优化设计。2020年,掌握海水淡化装置与火力发电机组余热利用耦合设计,开展余热利用低温多效蒸馏海水淡化技术基础研究,开展可用于拥有低温热源的企业低成本制取高品质淡水的推广应用。
9.基础性、前瞻性技术研究
(1)电工新材料
电工新材料是电气工程学科发展的基础,电工新材料的电磁等特性直接决定了所生产的各类电气装备的性能和水平,传统电气装备受电工材料电磁参数等限制致使其发展受到制约。未来开发出新一代电工材料将对电气工程学科发展带来革命性影响,对国民经济发展、科学进步,以及国防建设能力的提高有重要意义。
(2)无线输电技术
无线输电距离越长,输电效率越低,技术难度也越大。对于中短距离的无线输电技术来说,基于电磁感应方式的无线输电技术是目前研究最多、应用最为成熟的一种;对于长距离无线输电来说,微波输能成为目前研究解决远距离输电的主流技术,长距离无线输电技术在空间电站电力传输、偏远地区重要负荷供电以及移动负荷供电等方面具有应用前景。未来研究方向重点在:研究提高各种无线输电效率的技术优化措施、提出技术解决方案和工程方法;试验应用不同应用场合、不同应用方式下的无线输电的原型试验装置或示范系统。
(3)超导技术
超导体的特性在电力方面具有重大应用价值。十多年来,随着高温超导技术的发展,超导电力技术的研发取得较大进步,国际上,超导电缆和超导限流器的示范已经达到输电电压等级。我国在高温超导材料制备方面与国际先进水平仍有较大差距,主要体现在高温超导带材的电磁性能和单根超导带材的长度方面。
阅读材料:引人注目的可燃冰开采技术
通过2017年5月成功对可燃冰的试采,中国实现了可燃冰全流程试采核心技术的重大突破,形成了国际领先的新型试采工艺。这是我国首次,也是世界第一次成功实现该类型资源安全可控开采,为天然气水合物广泛开发利用提供了技术储备,积累了宝贵经验。
本次开采采用“地层流体抽取试采法”,有效解决了储层流体控制与可燃冰稳定持续分解难题。同时,成功研发了储层改造增产、可燃冰二次生成预防、防砂排砂等开采测试关键技术,其中很多技术都超出了石油工业的防砂极限。
由于甲烷是比二氧化碳更高效的温室气体,因此天然气水合物的环境问题一直是人们关心的一个重要问题。
2011年6月至2017年3月,南海水合物环评项目组在神狐水合物区先后共组织了10个航次的野外调查工作,调查内容包括海底工程地质特征、海底环境监测、海洋生物特征等,基本查明了水合物试采区的海洋环境特征,同时,发展了一系列我国拥有自主知识产权的水合物环境评价技术,为水合物试采、开发提供了良好基础。
水合物试采的环境问题,主要是试采过程中是否发生不可控的水合物分解,导致甲烷泄漏,从而引起海底滑坡等地质灾害,甚至是甲烷泄漏到海洋或者大气中而引起环境问题。针对这些问题,在试采过程中,一方面根据水合物区海底地形地貌特征、工程地质特征、水合物储层特征,通过合理设计井位及降压方案,从工程设计上避免发生甲烷泄漏所引发的环境问题和灾害问题,另一方面通过布设海底地形、气体渗漏等监测设备,构建了海水—海底—井下一体化环境安全监测体系,实现对温度、压力、甲烷浓度及海底稳定性参数的实时、全过程监测。监测结果显示试采未对周边大气和海洋环境造成影响,整个过程安全、友好、可控、环保。
本次开采试验为后续研究提出了很多课题。下一步重点是研究如何解决本次试验当中发现的一些问题,并在之后3—5年内开展第二次试采,进一步为商业化开采打好技术铺垫。如,试采过程中,由于地层复杂而导致施工困难很大,测井数据采集需要面对高排量与低排量钻进之间的矛盾;泥浆比重配值、钻井安全及地层防漏失问题的协调;地层可动水含量少对测试过程控制造成的困难,以及如何解决长期开采防砂、稳产等难题,都是本次试采遇到的需要通过后续研究来解决的问题。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。