理论教育 中国省域工业经济增长要素效率综合影响因素分析的阶段性研究

中国省域工业经济增长要素效率综合影响因素分析的阶段性研究

更新时间:2025-01-03 理论教育 版权反馈
【摘要】:表6-7中国省域工业经济增长1998—2007年层一变量的样本统计值由于数据经过不变价处理且取了对数,因而省内各年度间变量值差异不大。1998—2007年中国省域工业经济增长要素效率异质性检验。1998—2007年中国省域综合性因素对工业经济增长要素效率的作用分析。表6-11中国省域1998-2007工业经济增长全模型结果由表6-11的固定效应部分可得出以下结论:①综合性因素对截距的影响分析。

(一)1998—2007时段

1.描述统计

中国省域1998-2007工业经济增长层一变量的描述统计结果见表6-7。层二变量与第四章第一节中“变量的选择与数据来源”相同,具体数值见表4-10中层二部分。

表6-7 中国省域工业经济增长1998—2007年层一变量的样本统计值

由于数据经过不变价处理且取了对数,因而省内各年度间变量值差异不大。由表6-7各层一变量的标准差、最小值、最大值可知,1998—2007年间中国省域工业经济增长层一变量的国内生产总值对数、资本投入对数、劳动力投入对数在不同省之间存在较大的差异。

2.实证结果分析

(1)1998-2007年中国省域工业经济增长的变异分解。1998—2007年,中国省域工业经济增长的均值在不同省之间是否有显著性差异?差异由层一和层二所产生的影响各占多大比例?运用多层统计模型的零模型可以回答上述问题。依据层二所产生影响的占比(组内相关系数)大小决定是否将层二变量引入模型中。依据第三章第二节“效率型经济增长模型的应用步骤”中的零模型,得到零模型的结果见表6-8。

表6-8 中国省域1998—2007年工业经济增长均值与变异的分解结果

由表6-8固定效应部分可知,1998-2007年中国省域30个省的对数工业总产值(lnEY)均值为7.8347;由零模型的随机效应部分的卡方检验结构可知,30个省的对数工业总产值均值有显著性差异,而差异的度量可由组内相关系数ρ= 1.2798/(1.2798+ 0.1144)=91.79%给出,即1998—2007年中国省域30个省工业总产值对数平均值的差异有91.79%需要用二层变量来解释,只有8.21%的差异可以用层一变量来解释,从而说明在研究1998—2007年中国省域工业经济增长时,必须引入层二变量。层二变量为中国省域经济环境中的市场化进程、对外开放、金融发展、城市化、产业结构变迁。

(2)1998—2007年中国省域工业经济增长基本影响要素的作用分析。基本影响要素的作用分析可由固定效应(变截距)模型分析得到。依据第三章第二节“效率型经济增长模型的应用步骤”中的固定效应模型,得到固定效应模型的结果,见表6-9。

表6-9 中国省域1998-2007工业经济增长变截距模型结果

由表6-9的固定效应部分可知,基本影响因素lnEL的系数均值为负向显著、lnEK的系数均值为正向显著,即劳动力的增加将抑制中国省域工业经济增长,资本投入增加将促进中国省域经济增长。其中,劳动力增加1%,经济增长将降低0.1704%;资本投入增加1%,经济增长将增加0.3283%。由表6-9的随机效应部分可知,将劳动力投入、资本投入引入层一模型中,层一方差得到较好的解释,由零模型结果表6-8中的0.1144减少到固定效应模型结果表6-9的0.0075,表明1998-2007年中国省域工业的劳动力投入、资本投入能较好地解释省内工业总产值不同年度间的变化。

(3)1998—2007年中国省域工业经济增长要素效率异质性检验。要素效率异质性的检验可由随机效应(变系数)模型分析得到。依据第三章第二节“效率型经济增长模型的应用步骤”中的随机效应模型,得到随机效应模型的结果,见表6-10。

表6-10 中国省域1998—2007年工业经济增长随机效应结果

由表6-10的固定效应部分可知,劳动力投入、资本投入的系数与表6-9的相应系数有一定的差异,这是由于使用变截距模型与变系数模型不同造成的,多层统计分析侧重于随机系数模型的结果。在1998-2007年中国省域工业经济增长过程中,资本增加1%,中国省域工业经济增长将增加0.3586%;劳动力对中国省域工业经济增长的影响不显著。由表6-10的随机效应部分可知,劳动力投入、资本投入的效率在各个省之间存在显著性差异,同时也表明截距、lnEL、lnEK与lnEY之间的关系随着省份的不同而显著不同。

(4)1998—2007年中国省域综合性因素对工业经济增长要素效率的作用分析。综合性因素对要素效率的作用分析可由全模型分析得到。依据第三章第二节“效率型经济增长模型的应用步骤”中的全模型,得到全模型的结果,见表6-11。

表6-11 中国省域1998-2007工业经济增长全模型结果

由表6-11的固定效应部分可得出以下结论:

①综合性因素对截距(剩余全要素生产率)的影响分析。市场化进程是正向显著影响因素,表明市场化程度高的省份剩余全要素生产率高。其具体影响程度为,市场化程度加快1个单位,全要素生产率将提高0.678。之所以能促进全要素生产率的提高,是由于市场化进程的推进改善了资源配置效率。金融规模是负向显著影响因素,表明金融规模越大的省份全要素生产率越低。其具体影响程度为,金融规模扩大0.1个单位,全要素生产率将降低0.07537。之所以会阻碍全要素生产率的提高,是由于中国当前以国有大银行为主导金融体系的发展模式对民营经济的发展产生了一定的挤出效应。

②综合性因素对劳动力产出效率的影响分析。金融规模为正向显著影响因素,表明金融规模均值大的省份劳动力产出效率均值大。其具体影响程度为,金融规模提高0.1个单位,劳动力产出效率将提高0.02581。同时,由于劳动力系数与金融规模的系数符号相同,因而金融规模水平的提高将加强劳动力与GDP间的正向关系。城市化是负向显著影响因素,表明城市化程度高的省份劳动力效率低。其具体影响程度为,城市化提高0.1个单位,劳动力产出效率将降低0.0962。同时,由于劳动力系数与城市化的系数符号相反,因而城市化水平的提高将削弱劳动力与GDP间的正向关系。

③综合性因素对资本产出效率的影响分析。市场化是负向显著影响因素,表明市场化程度高的省份资本产出效率低。其具体影响程度为,市场化程度加快1个单位,资本产出效率将降低0.2286。同时,由于资本系数与市场化的系数符号相反,因而市场化的水平提高将削弱资本与GDP间的正向关系。

(5)1998—2007年中国省域工业经济方差成分解释程度。由表6-8和表6-9的随机效应中的层一方差得到表6-12的原始总方差和条件总方差;表6-10和表6-11的随机效应中的层二方差之和得到表6-12的原始总方差和条件总方差。层一、层二的方差成分解释程度见表6-12。

表6-12 中国省域1998—2007年工业经济增长层一、层二的方差成分解释程度

由表6-12可知,层一方差解释程度为93.44%,层二方差解释程度为72.84%,总体上层一解释变量对层一方差,层二解释变量对层二方差都有较好的解释。这表明构建的1998—2007年中国省域工业经济增长要素效率影响因素的实证分析模型较为合理。

(二)2008—2016年时段(www.daowen.com)

1.描述统计

中国省域2008—2006工业经济增长层一、层二的描述统计结果见表6-13。层二变量与第四章第一节“变量的选择与数据来源”相同,具体数值见表4-19中层二部分。

表6-13 中国省域工业经济增长2008—2016年层一变量的样本统计值

由于数据经过不变价处理且取了对数,因而省内各年度间变量值差异不大。由表6-13各层一变量的标准差、最小值、最大值可知,2008—2016年中国省域工业经济增长层一变量的国内生产总值对数、资本投入对数、劳动力投入对数在不同省之间存在较大的差异。

2.实证结果分析

(1)2008—2016年中国省域工业经济增长的变异分解。2008—2016年,中国省域工业经济增长的均值在不同省之间是否有显著性差异?差异由层一和层二所产生的影响各占多大比例?运用多层统计模型的零模型可以回答上述问题。依据层二所产生影响的占比(组内相关系数)大小决定是否将层二变量引入模型中。依据第三章第二节“效率型经济增长模型的应用步骤”中的零模型,得到零模型的结果,见表6-14。

表6-14 中国省域2008—2016年工业经济增长均值与变异的分解结果

续 表

由表6-14固定效应部分可知,2008—2016年中国省域30个省的对数工业总产值(lnEY)均值为8.0753;由零模型的随机效应部分的卡方检验结构可知,30个省的对数工业总产值均值有显著性差异,而差异的度量可由组内相关系数ρ= 1.2259/(1.2259+ 0.0145)=98.83%给出,即1998—2007年中国省域30个省工业总产值对数平均值的差异有98.83%需要用二层变量来解释,只有1.17%的差异可以用层一变量来解释,从而说明在研究2008-2016年中国省域工业经济增长时,必须引入层二变量。层二变量为中国省域经济环境中的市场化进程、对外开放、金融发展、城市化、产业结构变迁。

(2)2008—2016年中国省域工业经济增长基本影响要素的作用分析。基本影响要素的作用分析,可由固定效应(变截距)模型分析得到。依据第三章第二节“效率型经济增长模型的应用步骤”中的固定效应模型,得到固定效应模型的结果,见表6-15。

表6-15 中国省域2008—2016年工业经济增长变截距模型结果

由表6-15的固定效应部分可知,基本影响因素lnEL的系数均值为正向显著、lnEK的系数值为负向显著,即劳动力的增加将促进2008—2016年中国省域工业经济增长,资本投入的增加将抑制中国省域经济增长。其中,劳动力增加1%,经济增长将增加0.2769%;资本投入增加1%,经济增长将降低0.0949%。由表6-15的随机效应部分可知,将劳动力投入、资本投入引入层一模型中,层一方差得到较好的解释,由零模型结果表6-14中的0.0145减少到固定效应模型结果表6-15的0.0039,表明2008—2016年中国省域工业的劳动力投入、资本投入能较好地解释省内工业总产值不同年度间的变化。

(3)2008—2016年中国省域工业经济增长要素效率异质性检验。要素效率异质性的检验可由随机效应(变系数)模型分析得到。依据第三章第二节“效率型经济增长模型的应用步骤”中的随机效应模型,得到随机效应模型的结果,见表6-16。

表6-16 中国省域2008—2016年工业经济增长随机效应结果

由表6-16的固定效应部分可知,劳动力投入、资本投入的系数与表6-15的相应系数有一定的差异,这是由于使用变截距模型与变系数模型不同造成的,多层统计分析侧重于随机系数模型的结果。在2008—2016年中国省域工业经济增长过程中,劳动力增加1%,经济增长将增加0.3688%;资本投入增加1%,经济增长将降低0.1210%。由表6-15的随机效应部分可知,劳动力投入、资本投入的效率在各个省之间存在显著性差异,同时表明截距、lnEL、lnEK与lnEY之间的关系在2008—2016年随着省份的不同而显著不同。

(4)2008—2016年中国省域综合性因素对工业经济增长要素效率的作用分析。综合性因素对要素效率的作用分析可由全模型分析得到。依据第三章第二节“效率型经济增长模型的应用步骤”中的全模型,得到全模型的结果,见表6-17。

表6-17 中国省域2008—2016年工业经济增长全模型结果

由表6-17的固定效应部分可知,①综合性因素对截距(剩余全要素生产率)的影响分析。市场化进程、对外贸易、金融结构是正向显著影响因素,表明市场化程度高、对外贸易水平高、金融结构水平高的省份剩余全要素生产率高。其具体影响程度为,市场化程度加快1个单位,全要素生产率将提高0.4596;对外贸易提高0.1个单位,全要素生产率将提高0.15371;金融结构水平提高0.1个单位,全要素生产率将提高0.10602。之所以能促进全要素生产率的提高,是由于市场化进程的推进改善了资源配置效率;进口可以通过“干中学”提升工人的技术水平;金融结构水平的提高可以改善资本配置效率。外商直接投资、金融规模是负向显著影响因素,表明外商直接投资越多、金融规模越大的省份全要素生产率越低。其具体影响程度为,外商直接投资提高0.1个单位,全要素生产率将降低0.15922;金融规模扩大0.1个单位,全要素生产率将降低0.06695。之所以会阻碍全要素生产率的提高,是由于外商直接投资对国内投资具有一定的挤出效应;中国当前以国有大银行为主导的金融体系的发展模式对民营经济发展产生了一定的挤出效应。

②综合性因素对劳动力产出效率的影响分析。产业结构合理化为正向显著影响因素,表明产业结构合理化均值大的省份劳动力产出效率均值大;具体影响程度为,产业结构合理化程度提高0.1个单位,劳动力产出效率将提高0.07323。同时,由于劳动力系数与产业结构合理化的系数符号相同,因而产业结构合理化水平的提高将加强劳动力与GDP间的正向关系。之所以能促进劳动力产出效率的提高,是由于产业结构合理化能促进要素更合理的流动。

③综合性因素对资本产出效率的影响分析。金融结构是正向显著影响因素,表明金融结构程度高的省份资本产出效率高。其具体影响程度为,金融结构提高0.1个单位,资本产出效率将增加0.00761。同时,由于资本系数与金融结构的系数符号相同,因而金融结构水平的提高将加强资本与GDP间的正向关系。之所以能促进资本产出效率的提高,是由于金融结构水平的提高能促进资本更合理的流动。

(5)2008—2016年中国省域工业经济方差成分解释程度。由表6-14和表6-15的随机效应中的层一方差得到表6-18的原始总方差和条件总方差,表6-16和表6-17的随机效应中的层二方差之和得到表6-18的原始总方差和条件总方差。层一、层二的方差成分解释程度见表6-18。

表6-18 中国省域2008—2016年工业经济增长层一、层二的方差成分解释程度

由表6-18可知,层一方差解释程度为73.10%,层二方差解释程度为65.96%,总体上层一解释变量对层一方差,层二解释变量对层二方差都有较好的解释。这表明构建的2008—2016年中国省域工业经济增长要素效率影响因素的实证分析模型较为合理。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈