课件 小学五年级数学上册课件:《整数、小数四年混合运算》

小学五年级数学上册课件:《整数、小数四年混合运算》(2篇)

更新时间:2025-01-01 课件 版权反馈
第1篇:小学五年级数学上册课件:《整数、小数四年混合运算》
拓展

  教学内容:

  课本第39页例1、例2.

  教学目标:

  1、使学生理解第一级运算和第二级运算的含义。

  2、使学生掌握无括号的四则混合运算顺序,并能正确地进行计算。

  3、能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行概括、总结。

  4、培养学生认真严格的态度。

  教学过程:

  一、复习铺垫

  (1)设问:我们学过哪些计算?(学生回答后,告诉学生:加法、减法、乘法和除法这四种运算,统称为四则运算。)

  (2)填空回答。

  ①在一个算式里,如果只有()或者只有(),要从左往右依次计算。

  ②在一个算式里,如果有(),又有(),要先做()后做()。

  (3)在一个算式里,如果有括号,要先算()。

  二、新授

  1、出示课题:整数、小数四则混合运算。

  2、介绍四则运算:我们学过的加、减、乘、除四种运算,统称四则运算。

  3、教学例1.

  (1)板书例1:3.7-2.5+4.6、3.6×6÷0.9

  然后设问

  ①这些算式里有哪些运算?

  在学生回答的基础上告诉学生:加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

  ②这两个算式的运算顺序怎样?

  ③如果用“第一级运算”代替“加、减法”,用“第二级运算”代替“乘、除法”,运算顺序怎样叙述。

  根据学生回答,改变复习填空①的叙述。

  ④再概括一点讲,这句话可以怎样叙述?

  根据学生回答,改变复习填空①的叙述,出示教材结语。

  (2)学生完成例1的计算。

  4、教学例2.

  (1)板书例2:35.6-5×1.73,6.75+2.52÷1.2,然后设问

  ①算式里含有几级运算?

  ②运算顺序怎样?

  根据学生回答,改变复习填空②的叙述,出示教材结语。

  (2)学生把没有做完的继续做完。(一学生板演,其余做在书上。)

  (3)完成例2下面的“做一做”习题。

  5、小结:混合运算步骤比较多,容易发生错误,我们要养良好的习惯,计算时要做到:“一看、二想、三划、四算、五查”。在没有括号算式中,先算乘除,后算加减。

  三、巩固练习。

  1、(1)填空。(出示,学生口答)

  ①加、减、乘、除四则运算统称为()。

  ②加法和减法叫做第()级运算,乘法和除法叫做第()级运算。

  ③一个算式里,如果只含有同一级运算要从()计算;如果含有两级运算,要先做第()级运算,后做第()级运算;如果有两种括号,要先算()括号里面的,再算()括号里面的。

  2、课本第39页做一做。

  四、作业。

  练习十第1、4题。

第2篇:小学五年级数学上册课件:《整数、小数四年混合运算》
拓展

  教学目标:

  (一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。

  (二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。

  (三)培养学生养成良好的学习习惯,提高学生的计算能力。

  教学重点:

  掌握整数、小数四则混合运算的运算顺序。

  教学难点:

  提高学生计算正确率以及约等号的正确使用。

  教学过程:

  一、复习准备

  1.口算

  12+0.12=、7.2-0.2=、3.5÷0.35=

  2.95+0.05=、5-0.6=、2.8÷0.14=

  8÷12.5=、1.2+2.8-3.99=、4×1.72=

  3.74+6.26=、4.5×6=、0.25×4÷0.2=

  2÷4=、20×0.2=、20.75-9.5=

  3.5×8×0.125=

  2.提问

  (1)我们学过哪几种运算?

  (2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)

  (3)整数四则混合运算的顺序是什么?

  二、学习新课

  1.学习例1:3.7-2.5+4.6=、3.6×6÷0.9=

  (1)思考:以上两题中分别含有什么运算?运算顺序怎样?

  (2)学生试算后订正。

  3.7-2.5+4.6

  =1.2+4.6

  =5.8

  3.6×6+0.9

  =21.6÷0.9

  =24

  (3)小结运算顺序

  ①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。

  ②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)

  ③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)

  2.学习例2:35.6-5×1.73=、6.75+2.52÷1.2=

  (1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?

  (2)学生计算后订正。

  (3)小结。

  以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?

  讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。

  (4)练习:先说出运算顺序,再算出得数。

  ①P37“做一做”;②3.6÷1.2+0.5×5。

  思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)

  ②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)

  教师介绍:小括号“()”是公元17世纪由荷兰人吉拉特首先使用。中括号“[]”是公元17世纪首次出现在英国的互里士的著作中。

  小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)

  3.试做例3:3.6÷(1.2+0.5)×5=、3.69÷[(1.2+0.5)×5]=

  (1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)

  (2)学生试做

  3.6÷(1.2+0.5)×5

  =3.6÷1.7×5

  3.6÷[(1.2+0.5)×5]

  =3.6÷[1.7×5]

  =3.6÷8.5

  计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解

  在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。

  要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)

  学生继续计算后,订正

  3.6÷(1.2+0.5)×5

  =3.6÷1.7×5

  ≈2.12×5

  =10.6

  3.6÷[(1.2+0.5)×5]

  =3.6÷[1.7×5]

  =3.6÷8.5

  ≈0.42

  提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)

  4.小结

  (1)什么情况用等于号?什么时候用约等于号?(当除不尽或者商的小数位数较多时,用“四舍五入法”保留两位小数,在保留两位小数取近似值的这一步,要写约等于号;当取准确值时,用等号。)

  (2)要改变算式的运算顺序,可以怎么办?(可以使用小括号、中括号。)

  (3)有括号的算式,运算顺序怎样?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)

  三、巩固反馈

  1.P38:做一做。

  2.P40:1①②,2①②。

  (1)说出运算顺序;

  (2)计算并且验算;

  (3)订正并小结验算方法。

  验算方法:①原式验算;②互逆验算;③交换验算。

  3.判断下面各题,哪些是对的,哪些是错的,并说明原因。

  (1)0.8-0.8×0.7=0();

  (2)1.6+1.4×2=6();

  (3)50-3.9+6.1=40();

  (4)20÷2.5×4=32();

  (5)9.6+0.4-9.6+0.4=0();

  (6)4.8×2÷4.8×2=1()。

  4.P40:4。先计算填空,再列出综合算式。

  5.课后作业:P40:1③④,2③④,3。

  

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈