呼吸道病毒科
腺病毒
腺病毒是一种没有包膜的直径为70~90纳米的颗粒,由252个壳粒呈廿面体排列构成。每个壳粒的直径为7~9纳米。衣壳里是线状双链DNA分子,约含35000bp,两端各有长约100bp的反向重复序列。由于每条DNA链的5'端同相对分子质量为55×103Da的蛋白质分子共价结合,可以出现双链DNA的环状结构。人体腺病毒已知有33种,分别命名为ad1~ad33,研究得最详细是ad2。
腺病毒对啮齿类动物有致癌能力,或能转化体外培养的啮齿类动物细胞。使细胞转化只需要腺病毒基因组的一部分,这些基因位于基因组的左端,约占整个基因组的7%~10%。尽管腺病毒分布很广,但对人体不出现致癌性。人体细胞是一类允许细胞,即这类细胞允许感染入侵的病毒在细胞内复制增殖,最后细胞裂解死亡而释放出大量子代病毒。在体外培养的多种人体肿瘤细胞中均未查出腺病毒颗粒,但在人的1号染色体上有ad12的整合位点,这意味着人体细胞对于腺病毒也可能是非允许细胞,即这类细胞在病毒感染后,病毒不能在细胞内复制增殖,但可整合在受感染细胞的基因组内。这些细胞被病毒转化,表型发生改变,且可在体外无限期地培养传代。
腺病毒载体的优点
宿主范围广,对人致病性低
腺病毒载体系统可广泛用于人类及非人类蛋白的表达。腺病毒可感染一系列哺乳动物细胞,因此,在大多哺乳动物细胞和组织中均可用来表达重组蛋白。特别需要指出的是:腺病毒具有嗜上皮细胞性,而人类的大多数的肿瘤就是上皮细胞来源的。另外,腺病毒的复制基因和致病基因均已相当清楚,在人群中早已流行(70%~80%成人体内都有腺病毒的中和抗体存在)。人类感染野生型腺病毒后仅产生轻微的自限性症状,且病毒唑治疗有效。
腺病毒
在增殖和非增殖细胞中感染和表达基因
逆转录病毒只能感染增殖性细胞,因此DNA转染不能在非增殖细胞中进行,而必须使细胞处于持续培养状态。腺病毒则能感染几乎所有的细胞类型,除了一些抗腺病毒感染的淋巴瘤细胞,腺病毒是研究原代非增殖细胞基因表达的最佳系统,它可以使转化细胞和原代细胞中得到的结果直接进行对比。
能有效进行增殖,浓度高
腺病毒系统可产生1010~1011VP/毫升,浓缩后可达1013VP/毫升,这一特点使它非常适用于基因治疗。
与人类基因同源
腺病毒载体系统一般应用人类病毒作为载体,以人类细胞作为宿主,因此为人类蛋白进行准确的翻译后加工和适当的折叠,提供了一个理想的环境。大多数人类蛋白都可达到高水平表达,并且具有完全的功能。
不整合到染色体中,无插入致突变性
逆转录病毒可随机整合到宿主染色体中,导致基因失活或激活癌基因。而腺病毒则除了卵细胞以外几乎在所有已知细胞中都不整合到染色体中,因此不会干扰其他的宿主基因。在卵细胞中整合单拷贝病毒则是产生具有特定特征的转基因动物的一个较好的系统。
能在悬浮培养液中扩增
293细胞可以适应悬浮培养,这一调整可使病毒大量扩增。大量事实证明,悬浮293细胞可在1~20升的生物反应器中表达重组蛋白。
能同时表达多个基因
这是第一个可以在同一细胞株或组织中用来设计表达多个基因的表达系统。最简单的方法是将含有2个基因的双表达盒插入腺病毒转移载体中,或者用不同的重组病毒共转染目的细胞株来分别表达一个蛋白。测定不同重组病毒的MOI比值,可正确估计各重组蛋白的相对共表达情况。
正是由于具有以上一些优点,腺病毒被极其广泛地应用于体外基因转导、体内接种疫苗和基因治疗等领域。
分类及致病性
分类及自20世纪50年代发现并成功分离腺病毒以来,已陆续发现了100余个血清型,其中人腺病毒有47种,分为A、B、C、D、E和F六个亚群。基因治疗常用的人的2型及5型腺病毒在血清学分类上均属C亚群,在DNA序列上有95%的同源性。二者的增殖能力非常强,滴度通常可以达到109pfu/毫升,其在单个细胞中的基因组拷贝数可达104(约占细胞总DNA的10%)。病毒颗粒比较稳定,通过CsCl梯度离心,可以达到1010~1011pfu/毫升,满足动物实验的要求。
2型和5型腺病毒的致病性主要表现为可以导致儿童上呼吸道感染。在感染的最初几天,由于病毒大量复制和释放,会出现中度发热、浑身酸痛、乏力、咽痛等症状。但这些症状通常是比较短暂而轻微的,在以后的几天里,会随着中和抗体的产生而逐渐消失。虽然可以说高滴度和高免疫原性是腺病毒的主要特点,但也是相对的,如8型腺病毒(主要感染小肠和结膜组织)可以在扁桃体等淋巴组织中潜伏下来。在C亚群的其他一些腺病毒中也可以见到同样的现象,这是因为病毒的E3区编码的功能可使其逃避宿主的免疫打击。这似乎有助于理解为何腺病毒载体在造血系细胞中的基因转导效率明显低于其他组织、细胞。
腺病毒的生活周期
腺病毒的生活周期可以分为截然不同却又不能割裂开来的2个阶段。第一阶段包括腺病毒颗粒黏附和进入宿主细胞,将基因组释放到宿主细胞核中,以及有选择性地转录和翻译早期基因。在这个阶段,细胞为病毒基因组复制和腺病毒晚期基因表达并最终释放成熟的感染颗粒,即第二阶段,作好了准备。第一阶段将在6~8个小时内完成,第二阶段则更快,只需4~6个小时。
黏附和进入细胞
腺病毒感染细胞的过程是从腺病毒纤毛的头节区黏附到细胞表面的特异性受体开始的。因为人腺病毒主要与柯萨奇B病毒共用一种受体,因此这种受体被称为柯萨奇/腺病毒受体即CAR。接下来病毒纤毛基底部五邻体表面的三肽RGD与细胞表面的αvβ3和αvβ5整合素结合,通过内吞作用将腺病毒内化到细胞中并进入溶酶体。在溶酶体的酸性环境下,腺病毒衣壳的构象将发生变化,被从溶酶体中释放出来,躲过溶媒体的消化作用。最后,腺病毒颗粒转位到细胞核,通过核孔将病毒DNA释放到细胞核内。相对于脂质体转染,腺病毒基因组进入细胞核是一个非常高效的过程,一般可以达到40%,前者虽然进入胞质的效率与后者相当,而DNA进入细胞核的效率却只有前者的1/1000。
流感病毒
流行性感冒病毒,简称流感病毒,是一种造成人类及动物患流行性感RNA病毒。在分类学上,流感病毒属于正黏液病毒科,它会造成急性上呼吸道感染,并借由空气迅速的传播,在世界各地常会有周期性的大流行。流行性感冒病毒在免疫力较弱的老人或小孩及一些免疫失调的病人会引起较严重的症状,如肺炎或是心肺衰竭等。
病毒最早是在1933年由英国人威尔逊·史密斯发现的,他称为H1N1。
H代表血凝素;N代表神经氨酸酶。数字代表不同类型。
病毒分类
类型与命名
根据流感病毒感染的对象,可以将病毒分为人类流感病毒、猪流感病毒、马流感病毒以及禽流感病毒等类群,其中人类流感病毒根据其核蛋白的抗原性可以分为3类:
(1)甲型流感病毒,又称A型流感病毒;(www.daowen.com)
(2)乙型流感病毒,又称B型流感病毒;
(3)丙型流感病毒,又称C型流感病毒。
电子显微镜下的甲型流感病毒
感染鸟类、猪等其他动物的流感病毒,其核蛋白的抗原性与人甲型流感病毒相同,但是由于甲型、乙型和丙型流感病毒的分类只是针对人流感病毒的,因此通常不将禽流感病毒等非人类宿主的流感病毒称作甲型流感病毒。
在核蛋白抗原性的基础上,流感病毒还根据血凝素和神经氨酸酶的抗原性分为不同的亚型。
根据世界卫生组织1980年通过的流感病毒毒株命名法修正案,流感毒株的命名包含6个要素:型别/宿主/分离地区/毒株序号/分离年份,其中对于人类流感病毒,省略宿主信息,对于乙型和丙型流感病毒省略亚型信息。例如A/swine/Lowa/15/30表示的是核蛋白为A型的,1930年在Lowa分离的以猪为宿主的H1N1亚型流感病毒毒株,其毒株序号为15,这也是人类分离的第一支流感病毒毒株。
形态结构
流感病毒呈球形,新分离的毒株则多呈丝状,其直径在80~120纳米,丝状流感病毒的长度可达400纳米。
流感病毒结构自外而内可分为包膜、基质蛋白以及核心3部分。
(1)核心
病毒的核心包含了存贮病毒信息的遗传物质以及复制这些信息必需的酶。流感病毒的遗传物质是单股负链RNA,简写为ss-RNA,ss-RNA与核蛋白相结合,缠绕成核糖核蛋白体,以密度极高的形式存在。除了核糖核蛋白体,还有负责RNA转录的RNA多聚酶。
甲型和乙型流感病毒的RNA由8个节段组成,丙型流感病毒则比它们少一个节段,第1、2、3个节段编码的是RNA多聚集酶,第4个节段负责编码血凝素;第5个节段负责编码核蛋白,第6个节段编码的是神经氨酸酶;第7个节段编码基质蛋白,第8个节段编码的是一种能起到拼接RNA功能的非结构蛋白,这种蛋白的其他功能尚不得而知。
丙型流感病毒缺少得是第六个节段,其第四节段编码的血凝素可以同时行使神经氨酸酶的功能。
(2)基质蛋白
基质蛋白构成了病毒的外壳骨架,实际上骨架中除了基质蛋白之外,还有膜蛋白。基质蛋白与病毒最外层的包膜紧密结合,起到保护病毒核心和维系病毒空间结构的作用。
当流感病毒在宿主细胞内完成其繁殖之后,基质蛋白是分布在宿主细胞细胞膜内壁上的,成型的病毒核心衣壳能够识别宿主细胞膜上含有基质蛋白的部位,与之结合形成病毒结构,并以出芽的形式突出释放成熟病毒。
(3)包膜
包膜是包裹在基质蛋白之外的一层磷脂双分子层膜,这层膜来源于宿主的细胞膜,成熟的流感病毒从宿主细胞出芽,将宿主的细胞膜包裹在自己身上之后脱离细胞,去感染下一个目标。
包膜中除了磷脂分子之外,还有2种非常重要的糖蛋白:血凝素和神经氨酸酶。这2类蛋白突出病毒体外,长度约为10~40纳米,被称作刺突。一般一个流感病毒表面会分布有500个血凝素刺突和100个神经氨酸酶刺突。在甲型流感病毒中血凝素和神经氨酸酶的抗原性会发生变化,这是区分病毒毒株亚型的依据。
血凝素呈柱状,能与人、鸟、猪豚鼠等动物红细胞表面的受体相结合引起凝血,故而被称作血凝素。血凝素蛋白水解后分为轻链和重链2部分,后者可以与宿主细胞膜上的唾液酸受体相结合,前者则可以协助病毒包膜与宿主细胞膜相互融合。血凝素在病毒导入宿主细胞的过程中扮演了重要角色。血凝素具有免疫原性,抗血凝素抗体可以中和流感病毒。
神经氨酸酶是一个呈蘑菇状的四聚体糖蛋白,具有水解唾液酸的活性,当成熟的流感病毒经出芽的方式脱离宿主细胞之后,病毒表面的血凝素会经由唾液酸与宿主细胞膜保持联系,需要由神经氨酸酶将唾液酸水解,切断病毒与宿主细胞的最后联系。因此神经氨酸酶也成为流感治疗药物的一个作用靶点,针对此酶设计的奥司他韦是最著名的抗流感药物之一。在1918~1919年流行性感冒肆虐期间,同类疗法曾经被医院采用。在26000位接受同类疗法的流感患者中,只有1/100的死亡率﹔而24000位接受对抗疗法流感患者死亡率则高达28/100。这个同类疗法的成功历史,正从医学历史上被刻意抹去。
变 异
在感染人类的3种流感病毒中,甲型流感病毒有着极强的变异性,乙型次之,而丙型流感病毒的抗原性非常稳定。
乙型流感病毒的变异会产生新的主流毒株,但是新毒株与旧毒株之间存在交叉免疫,即针对旧毒株的免疫反应对新毒株依然有效。
甲型流感病毒是变异最为频繁的一个类型,每隔十几年就会发生一个抗原性大变异,产生一个新的毒株,这种变化称作抗原转变,亦称抗原的质变;在甲型流感亚型内还会发生抗原的小变异,其表现形式主要是抗原氨基酸序列的点突变,称作抗原漂移,亦称抗原的量变。抗原转变可能是血凝素抗原和神经氨酸酶抗原同时转变,称作大族变异;也可能仅是血凝素抗原变异,而神经氨酸酶抗原则不发生变化或仅发生小变异,称作亚型变异。
对于甲型流感病毒的变异性,学术界尚无统一认识。一些学者认为,是由于人群中传播的甲型流感病毒面临较大的免疫压力,促使病毒核酸不断发生突变。另一些学者认为,是由于人甲型流感病毒和禽流感病毒同时感染猪后发生基因重组导致病毒的变异。后一派学者的观点得到一些事实的支持,实验室工作显示,1957年流行的亚洲流感病毒基因的8个节段中,有3个是来自鸭流感病毒,而其余5个节段则来自H1N1人流感病毒。
甲型流感病毒的高变异性增大了人们应对流行性感冒的难度,人们无法准确预测即将流行的病毒亚型,便不能有针对性地进行预防性疫苗接种。另一方面,每隔十数年便会发生的抗原转变,更会产生根本就没有疫苗的流感新毒株。
致病性
流感病毒侵袭的目标是呼吸道黏膜上皮细胞,偶有侵袭肠黏膜的病例,则会引起胃肠型流感。
病毒侵入体内后依靠血凝素吸附于宿主细胞表面,经过吞饮进入胞浆;进入胞浆之后病毒包膜与细胞膜融合释放出包含的ss-RNA;ss-RNA的8个节段在胞浆内编码RNA多聚酶、核蛋白、基质蛋白、膜蛋白、血凝素、神经氨酸酶、非结构蛋白等构件;基质蛋白、膜蛋白、血凝素、神经氨酸酶等编码蛋白在内质网或高尔基体上组装M蛋白和包膜;在细胞核内,病毒的遗传物质不断复制并与核蛋白、RNA多聚酶等组建病毒核心;最终病毒核心与膜上的M蛋白和包膜结合,经过出芽释放到细胞之外,复制的周期大约8个小时。
流感病毒感染将导致宿主细胞变性、坏死乃至脱落,造成黏膜充血、水肿和分泌物增加,从而产生鼻塞、流涕、咽喉疼痛、干咳以及其他上呼吸道感染症状。当病毒蔓延至下呼吸道,则可能引起毛细支气管炎和间质性肺炎。
病毒感染还会诱导干扰素的表达和细胞免疫调理,造成一些自身免疫反应,包括高热、头痛、腓肠肌及全身肌肉疼痛等,病毒代谢的毒素样产物以及细胞坏死释放产物也会造成和加剧上述反应。
由于流感病毒感染会降低呼吸道黏膜上皮细胞清除和黏附异物的能力,所以大大降低了人体抵御呼吸道感染的能力,因此流感经常会造成继发性感染,由流感造成的继发性肺炎是流感致死的主要死因之一。
防治流感病毒一方面要加强流感病毒变异的检测,尽量作出准确的预报,以便进行有针对性的疫苗接种;另一方面是切断流感病毒在人群中的传播,流感病毒依靠飞沫传染。尽早发现流感患者,对公共场所使用化学消毒剂熏蒸等手段可以有效抑制流感病毒的传播;对于流感患者,可以使用干扰素、金刚烷胺、奥司他韦等药物进行治疗,干扰素是一种可以抑制病毒复制的细胞因子,金刚烷胺可以作用于流感病毒膜蛋白和血凝素蛋白,阻止病毒进入宿主细胞,奥司他韦可以抑制神经氨酸酶活性,阻止成熟的病毒离开宿主细胞。还有迹象显示板蓝根、大青叶等中药可能有抑制流感病毒的活性,但是未获实验事实的证实。除了针对流感病毒的治疗,更多的治疗是针对流感病毒引起的症状的,包括非甾体抗炎药等,这些药物能够缓解流感症状,但是并不能缩短病程。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。