百科知识 分子标记的原理及其遗传特性

分子标记的原理及其遗传特性

更新时间:2025-01-02 百科知识 版权反馈
【摘要】:2.RFLP标记的特点RFLP标记具有共显性的特点。RAPD标记一般表现为显性遗传,极少数表现为共显性遗传。AFLP多态性远远超过其他分子标记,利用放射性同位素在变性的聚丙烯酰胺凝胶上电泳可检测到50—100条AFLP扩增产物,一次PCR反应可以同时检测多个遗传位点,被认为是指纹图谱技术中多态性最丰富的一项技术。

(一)RFLP

    发现最早,目前应用最为广泛的一种分子标记。这一类标记在20世纪70年代已被发现。1980年,人类首先将其用于构建连锁图。目前,该技术已广泛用于动植物连锁图的构建、重要农艺性状基因的分子标记等。

    1.RFLP标记的原理  植物基因组DNA上的碱基替换、插人、缺失或重复等,造成某种限制性内切酶(restriction enzymes,简称RE)酶切位点的增加或丧失是产生限制性片段长度多态性的原因。对每一个DNA/RE组合而言,所产生的片段是特异性的,它可作为某一DNA所特有的“指纹”。某一生物基因组DNA经限制性内切酶消化后,能产生数百万条DNA片段,通过琼脂糖电泳可将这些片段按大小顺序分离,然后将它们按原来的顺序和位置转移至易于操作的尼龙膜或硝酸纤维素膜上,

 用放射性同位素(如32P)或非放射性物质(如生物素、地高辛等)标记的DNA作为探针,与膜上的DNA进行杂交(即Southern杂交),若某一位置上的DNA酶切片段与探针序列相似,或者说同源程度较高,则标记好的探针就结合在这个位置上。放射自显影或酶学检测后,即可显示出不同材料对该探针的限制性片段多态性情况

对于线粒体叶绿体等相对较小的DNA分子,通过合适的限制性内切酶酶切,电泳分析后有可能直接检测出DNA片段的差异,就不需Southern杂交。

RFLP分析的探针,必须是单拷贝或寡拷贝的,否则,杂交结果不能显示清晰可辨的带型,表现为弥散状,不易进行观察分析。RFLP探针主要有三种来源,即cDNA克隆、植物基因组克隆(Random Genome克隆,简称RG克隆)和PCR克隆。

   2.RFLP标记的特点  RFLP标记具有共显性的特点。共显性(co-dominant)标记指的是双亲的两个以上分子量不同的多态性片段均在F,中表现。它已被广泛用于多种生物的遗传分析,特别是构建植物遗传图谱。

 (二)RAPD标记

    1.RAPD标记的原理  Williams等(1990)以DNA聚合酶链式反应为基础而提出的。所谓RAPD标记是用随机排列的寡聚脱氧核苷酸单链引物(长度为10个核苷酸)通过PCR扩增染色体组中的DNA所获得的长度不同的多态性DNA片段。RAPD标记的原理同PCR技术,但又有别于常规的PCR反应。主要表现在以下3个方面:·①引物。常规的PCR反应所用的是一对引物,长度通常为20bp(碱基对)左右;RAPD所用的引物为一个,长度仅10bp。②反应条件。常规的PCR复性温度较高,一般为55—60℃,而RAPD的复性温度仅为36℃左右。③扩增产物。常规PCR产物为特异扩增,而RAPD产物为随机扩增。这样,RAPD反应在最初反应周期中,由于短的随机单引物,低的退火温度,一方面保证了核苷酸引物与模板的稳定配对,另一方面因引物中碱基的随机排列而又允许适当的错配,从而扩大引物在基因组DNA中配对的随机性,提高了基因组DNA分析的效率

    2.RAPD标记的特点  如果基因组在特定引物结合区域发生DNA片段插人、缺失或碱基突变,就可能导致特定引物结合位点分布发生相应变化,导致PCR产物增加、缺少或分子量大小的变化。若PCR产物增加或缺少,则产生显性的RAPD标记;若PCR产物发生分子量变化则产生共显性的RAPD标记,通过电泳分析即可检测出基因组DNA在这些区域的多态性。RAPD标记一般表现为显性遗传,极少数表现为共显性遗传。显性标记指的是F1的多态性片段与亲本之一完全一样,这样在杂交组合后代中扩增产物的记录可记为“有/无”,即把每一随机扩增多态性片段作为分子图谱的一个位点。

    RAPD引物长一般为10个碱基,人工合成成本低,一套引物可用于不同作物,建立一套不同作物标准指纹图谱。RAPD可以方便用于种质资源指纹档案建立,种内遗传多样性分析和品种纯度鉴定。因此RAPD也是一种潜力很大的分子标记。

RAPD最大缺点是重复性较差。RAPD标记的实验条件摸索和引物的选择是十分关键而艰巨的工作。为此研究人员应对不同物种做大量的探索工作,以确定每一物种的最佳反应程序包括模板DNA、引物、Mg2+浓度等。只要实验条件标准化,可以提高RAPD标记的再现性。(www.daowen.com)

(三)AFLP

    它是荷兰Keygene公司科学家Marc & Pieter l993年创造发明的一种DNA分子标记。该技术是对限制性酶切片段的选择性扩增,又称基于PCR的RFLP。鉴于AFLP标记的多态性强,一次可检测到100—150个扩增产物,因而非常适合绘制品种指纹图谱及遗传多样性的研究。

 1.AFLP标记的原理  首先对基因组的DNA进行双酶切,其中一种为酶切频率较高的限制性内切酶(frequent cutter),另一种为酶切频率较低的酶(rare cutter)。用酶切频率较高的限制性内切酶消化基因组DNA是为了产生易于扩增的,且可在测序胶上能较好分离出大小合适的短DNA片段;用后者消化基因组DNA是限制用于扩增的模板DNA片段的数量。AFLP扩增数量是由酶切频率较低的限制内切酶在基因组中的酶切位点数量决定的。将酶切片段和含有与其黏性末端相同的人工接头连接,连接后的接头序列及临近内切酶识别位点就作为以后PCR反应的引物结合位点,通过选择在末端上分别添加1~3个选择性碱基的不同引物,选择性地识别具有特异配对顺序的酶切片段与之结合,从而实现特异性扩增,最后用变性聚丙烯酰胺凝胶电泳分离扩增产物。

 2.AFLP标记的特点  AFLP技术结合了RFLP稳定性和PCR技术高效性的优点,不需要预先知道DNA序列的信息,因而可以用于任何动植物的基因组研究。

    AFLP多态性远远超过其他分子标记,利用放射性同位素在变性的聚丙烯酰胺凝胶上电泳可检测到50—100条AFLP扩增产物,一次PCR反应可以同时检测多个遗传位点,被认为是指纹图谱技术中多态性最丰富的一项技术。

    AFLP标记多数具有共显性表达、无复等位效应等优点,表现孟德尔方式遗传。

(四)SSR

    1987年,Nakamura发现生物基因组内有一种短的重复次数不同的核心序列,他们在生物体内多态性水平极高,一般称为可变数目串联重复序列,简称VNTR(Variable量number tande repeat)。VNTR标记包括小卫星(minisatellites)和微卫星(mierosatellites)标记两种。微卫星标记,即SSR标记,是一类由1~6个碱基组成的基序(motif)串联重复而成的DNA序列,其长度一般较短,广泛分布于基因组的不同位置(图17—4A)。如(CA)n、(AT)n、(GGC)n、(GATA)n等重复,其中n代表重复次数,其大小在10~60之间。这类序列的重复长度具有高度变异性。对SSR的研究最早始于动物基因组,特别是人类和哺乳动物基因组研究。目前植物SSR研究也非常活跃。根据基因数据库检索及基因文库杂交筛选,已明确在植物核基因组中,各种SSR数量从大到小依次为(AT)n、An、Tn、(AG)n、(CT)n、(AAT)n、(ATT)n、(GTT)n、(AGC)n、(GCT)n、(AAG)n、(CTT)n、(AATT)n、(TTAA)n、(AAAT)n、(ATTI)n、(AC)n、(GT)n等。

    1.SSR标记的原理  尽管微卫星DNA分布于整个基因组的不同位置上,但其两端的序列多是相对保守的单拷贝序列。根据微卫星DNA两端的单拷贝序列设计一对特异引物,利用PCR技术,扩增每个位点的微卫星DNA序列,通过电泳分析核心序列的长度多态性。一般地,同一类微卫星DNA可分布于整个基因组的不同位置上,通过其重复次数的不同以及重叠程度的不完全而造成每个座位的多态性。SSR标记多态性丰富,重复性好,其标记呈共显性,分散分布于基因组中。

 2.SSR标记的特点  SSR的检测是依据其两侧特定的引物进行PCR扩增,因此是基于全基因组DNA扩增其微卫星区域。检测到的一般是一个单一的复等位基因位点。SSR标记为共显性标记,可鉴别出杂合子和纯合子;重复性高,稳定可靠。为了提高分辨率,通常使用聚丙烯酰胺凝胶电泳它可检测出单拷贝差异。它兼具PCR反应的优点,所需DNA样品量少,对DNA质量要求不太高。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈