动物大迁徒
迁徙,在动物王国中是一件平淡无奇的事情。比如,每年冬天,鲑鱼都会在欧洲北部的河流和湖泊中产卵,卵孵化成幼小的鱼苗,顺着河道流入大海,在北大西洋中发育成熟,三年后,这些年轻的鲑鱼溯流而上,重新回到它们孵化的河流与湖泊中去交配繁衍。帝王蝶会在秋天迁徙数千公里,向南穿过整个美国。它们或者它们的后代(它们会在迁徙途中繁衍后代)又会向北回迁,回到当初自己的先辈化蛹的同一片树林。在南大西洋阿森松岛(Ascension Island)海滩上孵化的绿海龟在海洋中游了数千公里后,每三年会回到那个它们当初出生的撒满蛋壳的沙滩上去产卵繁殖。这样的故事还有很多:许多候鸟、鲸鱼、北美驯鹿、多刺龙虾、蛙类、蝾螈,甚至是蜜蜂都有能力进行足以让最伟大的人类探险家都感觉困难的长途跋涉。
几个世纪以来,这些动物如何在环球迁徙中找到自己的方向一直是一个谜。现在我们知道,它们各有神通:有些动物会在日间利用太阳、在夜间利用恒星的相对位置来导航;有些动物会记忆地标;有些动物甚至能闻到它们在这个星球上该走的路。但导航能力最不可思议的要数知更鸟:它们能感知到地球磁场的方向与强度。这种能力被称为磁感应(magnetoreception)。虽然现在我们知道有一些其他生物也拥有这项能力,但我们最感兴趣的还是知更鸟在跨越大半个地球的旅程中是如何找到自己的方向的。
让知更鸟知道该飞多远、朝哪个方向飞的机理,其实已经编码在它们从父母那里继承来的基因之中了。这是一种复杂而又不同寻常的能力,让它能依靠这种第六感来确定自己的航向。像许多其他的鸟类一样(甚至还包括一些昆虫和海洋生物),知更鸟拥有感知地球微弱磁场的能力,并能依靠内在的导航直觉,从地磁场中得出方向性的信息。就知更鸟而言,它的导航直觉需要一种新式的化学罗盘作为指引。
磁感应真是个谜题。问题的关键在于地球的磁场非常微弱。地表的磁场在30~70微特斯拉[1]之间,这一数值虽然足以使一个处于微妙平衡中且几乎没有阻力的罗盘指针偏转,但它只有一个普通冰箱贴磁力的1%。这就出现了使人困惑的谜题:动物要想感知到地磁场,其体内某处的一个化学反应必然在某种程度上要受到地磁场的影响——这是包括我们在内的所有生物感知外界信号的方式。但是,地磁场与活体细胞内的分子相互作用所产生的能量还不及使一个化学键形成或断裂所需能量的1/109。那么,知更鸟究竟是如何感知到地磁场的呢?
quantum
发热体表面的物质在以一定的离散频率振动,导致热能只能通过微小而离散的能量团进行辐射,而且这些能量团不可以再分,被称为“量子”。(www.daowen.com)
这样的谜题无论多么微不足道都足以令人着迷,因为这些谜题的答案可能将我们对世界的认识引向一种根本性转变的新方向。比如,16世纪时,哥白尼曾深思托勒密地心说模型中一个相对次要的几何关系问题,这最终让他发现我们人类并不是整个宇宙的中心。达尔文痴迷于研究动物物种的地理分布与孤立小岛上雀类喙的异化之谜,最后他基于此提出了著名的进化论。德国物理学家马克斯·普朗克(Max Planck)关心物体热辐射的问题,他开始追寻黑体辐射之谜的解答,因此发现能量以名为“量子”(quantum)的离散团块传递,并最终在1900年引导了量子理论的诞生。那么,对于“鸟儿们如何在跨越半球的迁徙中找到方向”的解答是否也能掀起一场生物学革命呢?虽然有点出人意料,但答案是肯定的。
但是,像这样的谜题,也会让伪科学家与神秘主义者们魂牵梦绕。正如牛津大学的化学家彼得·阿特金斯(Peter Atkins)在1976年所说:“磁场对化学反应的影响——这一研究一直是冒充内行的骗子们嬉闹的领域。”事实也的确如此,各种古怪的解释都在某种程度上被当作候鸟迁徙时确定路线的机理。比如,心灵感应、古老的“灵线”(ley lines,连接不同考古或地理标志性地点的隐形线路,被认为拥有精神能量)、由“超心理学家”鲁珀特·谢尔德雷克(Rupert Sheldrake)发明的饱受争议的“形态共振”(morphic resonance)理论,不一而足。因此,阿特金斯在20世纪70年代的看法也就变得可以理解,那反映了当时在大多数科学家中流行的对“动物可能有能力感知到地球磁场”的想法所持的怀疑主义态度。似乎没有任何分子机理能够允许动物拥有感应磁场的能力,至少在传统的生物化学领域,这样的机理并不存在。
但就在彼得·阿特金斯表达了他的怀疑论的同一年,一对住在法兰克福的德国鸟类学家伉俪沃尔夫冈·维尔奇科与罗斯维塔·维尔奇科(Wolfgang and Roswitha Wiltschko)在世界最顶尖的学术杂志《科学》上发表了一篇突破性的论文,毋庸置疑地说明知更鸟确实能够感知到地球磁场。更令人惊奇的是,他们发现这些鸟儿们的感知能力与普通指南针的工作原理似乎并不相同。因为,指南针能够测量出从地磁北极到地磁南极的磁场差异,而知更鸟只能够判断出地极到赤道的磁场差异。
要理解指南针是如何工作的,我们需要先了解一下磁场线。磁场线是确定磁场方向的无形轨道。放在磁场中任意位置后,罗盘指针会自动与磁场线平行对齐。在一块条形磁铁上放一张纸,上面撒上铁屑,铁屑自动排列形成的模式,就是最常见的磁场线的形式。现在,请想象整个地球是一个巨大的条形磁铁,其磁场线从地球的南极发出,向外辐射,弯曲成环,最终汇入北极(见图0-1)。
图0-1 地球磁场
在两极附近,这些磁场线的方向几乎是垂直传入或传出地面的,但是,越接近赤道,这些磁场线就越平而且越接近与地表平行。因此,我们把一种测量磁场线与地球表面夹角的罗盘称为“磁倾角罗盘”(inclination compass),该罗盘能够区分朝向地极与朝向赤道的方向。但这种罗盘并不能区分南北极,因为磁场线在地球的两个半球都会与地面产生相同的夹角。维尔奇科夫妇在1976年的研究中发现,知更鸟的磁感知能力正像这种磁倾角罗盘。可问题在于,当时没有人对这种生物磁倾角罗盘的工作原理有任何头绪。因为,在那个时候,人们完全无法想象,也没有已知的原理可以解释动物如何能在自己体内测出磁场线与地面的夹角。答案原来藏在当代最令人震惊的科学领域之中,其原理与量子力学的奇异理论有扯不断的关系。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。